Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Prospects of geothermal water Use in cultivation of Spirulina

Treść / Zawartość
Warianty tytułu
Języki publikacji
Spirulina has been studied due to its commercial importance as a source of essential amino acids, protein, vitamins, fatty acids etc. Most of the culture systems in use today are open ponds. The new approach proposed in this paper is to use the geothermal water as a medium for microalgae cultivation. Poland has beneficial conditions for wide geothermal use, as one of the environmentally friendly and sustainable renewable energy sources. In the planned research, geothermal water could be used to prepare microalgal culture medium, to heat greenhouses with bioreactors used for the growth of Spirulina, to dry the obtained biomass, as well as to heat the ground in foil tunnels. Using geothermal water gives the possibility to produce algae in open ponds covered with greenhouses and to cultivate plants during winter. The obtained algae can be used for the production of algal bio-products (e.g. homogenates), having the potential application in plant cultivation.

Opis fizyczny
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University
    of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Fossil Fuels, Mickiewicza 30 Av., 30-059 Kraków, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University
    of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University
    of Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland
  • [1] Piñero Estrada J.E., Bermejo Bescós P., Villar Del Fresno A.M. Antioxidant activity of different fractions of Spirulina platensis protean extract, Il Farmaco., 2001, 56, 497-500.[Crossref]
  • [2] Milledge J.J., Commercial application of microalgae other than as biofuels: a brief review, Rev. Environ. Sci. Biotechnol., 2011, 10, 31-41.[Crossref]
  • [3] Huang Z., Guo B.J., Wong R.N.S., Jiang Y., Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis, Food Chem., 2007, 100, 1137-1143.[Crossref]
  • [4] Belay A., Ota Y., Miyakawa K., Shimamatsu H., Current knowledge on potential health benefits of Spirulina, J. Appl. Phycol., 1993, 5, 235-241.[Crossref]
  • [5] Spolaore P., Joannis-Cassan C., Duran E., Isambert A., Commercial applications of microalgae, J. Biosci. Bioeng., 2006, 101(2), 87-96.[Crossref]
  • [6] Olguin E.J., Galicia S., Angulo-Guerrero O., Hernández E., The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste, Bioresour. Technol., 2001, 77, 19-24.[Crossref]
  • [7] Mishima T., Murata J., Toyoshima M., Fujii H., Nakajima M., Hayashi T., Kato T., Saiki I., Inhibition of tumor invasion and metastasis by calcium spirulan (Ca- SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis, Clin. Exp. Metastasis, 1998, 16, 541-550.[Crossref]
  • [8] Selmi C., Leung P.SC. Fischer L., German B., Yang C.-Y., Kenny T. P., Cysewsky G.R., Gershwin M.E., The effects of Spirulina on anemia and immune function in senior citizens, Cell. Mol. Immunol., 2011, 8, 248-254.[Crossref]
  • [9] Layam A., Reddy C.L.K., Antidiabetic property of Spirulina, Diabetol. Croat., 2006, 35(2), 29-33.
  • [10] Cingi C., Conk- Dalay M., Cakli H., Bal C., The effects of Spirulina on allergic rhinitis, Eur. Arch. Otorhinolaryngol., 2008, 265, 1219-1223.
  • [11] Colla L.M., Muccillo-Baisch A.L., Costa J.A.V., Spirulina platensis effect on the levels of total cholesterol, HDL and triacylglycerols in rabbits fed hypercholesterolemic diet, Braz. Arch. Biol. Technol., 2008, 51(2), 405-411.[Crossref]
  • [12] Ayehunie S., Belay A., Baba T.W., Ruprecht R.M., Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis), J. Acquir. Immune Defic. Syndr. Human Retrovirol., 1998, 18, 7-12.
  • [13] Verma S., Samarth R., Panwar M., Evaluation of radioprotective effects of Spirulina in swiss albino mice, Asian J. Exp. Sci., 2006, 20(1), 121-126.
  • [14] Ferreira-Hermosillo A., Torres-Duran P.V., Juarez-Oropeza M.A., Hepatoprotective effects of Spirulina maxima in patients with non-alkoholic fatty liver disease: a case series, J. Med. Case Rep., 2010, 4(103), 1-5.
  • [15] Hirahashi T., Matsumoto M., Hazeki K., Saeki Y., UI M., Seya T., Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis., Internat. Immunopharmacol., 2002, 2(4), 423- 434.[Crossref]
  • [16] Grawish M.E., Effect of Spirulina platensis extract on Syrian hamster cheek pouch mucosa painted with 7, 12-dimethylbenz
  • [a]anthracene, Oral Oncol., 2008, 44(10), 956-962.[PubMed]
  • [17] Abd El-Baky H.H., El Baz F.K., El-Baroty S., Characterization of nutraceutical compounds in blue green ala Spirulina maxima, J. Med. Plants Res., 2008, 2(10), 292-300.
  • [18] Borowitzka M.A., Commercial production of microalgae: ponds, tanks, tubes and fermenters, J. Biotechnol., 1999, 70, 313-321.
  • [19] Gouveia L., Oliveira A.C., Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 2009, 36(2), 269-274.[Crossref]
  • [20] Mar W., Effect of Spirulina on growth, yield and nutritive value of Vigna unguiculata (L.) Walp., Univ. Res. J., 2014, 6(1), 189-201.
  • [21] Hoffmann J.P., Wastewater treatment with suspended and nonsuspended algae, J. Phycol., 1998, 34, 757-763.[Crossref]
  • [22] Chojnacka K., Chojnacki A., Górecka H., Trace element removal by Spirulina sp. from copper smelter and refinery effluents, Hydrometallur., 2004, 73(1-2), 147-153.[Crossref]
  • [23] Vonshak A., Spirulina platensis (Arthrospira): Physiology, Cell- biology and Biotechnology, Taylor & Francis Ltd, 1997.
  • [24] Grobbelaar J. U., Microalgae mass culture: the constraints of scaling-up, J. Appl. Phycol., 2012, 24, 315-318.[Crossref]
  • [25] Converti A., Lodi A., Del Borhi A., Solisio C., Cultivation of Spirulina platensis in a combined airlift-tubular reactor system, Biochem. Eng. J., 2006, 32, 13-18.[Crossref]
  • [26] Posten C., Design principles of photo-bioreactors for cultivation of microalgae, Eng. Life Sci., 2009, 9(3), 165-177.[Crossref]
  • [27] Moheimani N.R., Borowitzka M.A., Limits to productivity of the alga Pleurochrysis cartetae (Haptophyta) grown in outdoor raceway ponds, Biotechnol. Bioeng., 2007, 96(1), 27-36.[Crossref]
  • [28] Andrade M.R., Costa J.A.V., Outdoor and indoor cultivation of Spirulina platensis in the extreme south of Brazil, Verl. d. Zeitschr. F. Naturforsch., 2008, 63c, 85-90.
  • [29] Costa J.A.V., Colla L.M., Filho P.D., Kabke K., Weber A., Modeling of Spirulina platensis growth in fresh water using response surface methodology, World J. Microbiol. Biotechnol., 2002, 18, 603-607.[Crossref]
  • [30] Oliveira M.A.C.L.DE, Monteiro M.P.C., Robbs P.G., Leite S.G.F., Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures, Aquacult. Int., 1999, 7, 261-275.[Crossref]
  • [31] Andrade M.R., Costa J.A.V., Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate, Aquaculture, 2007, 264(1-4), 130-134.
  • [32] Christenson L., Sims R., Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol. Adv., 2011, 29(6), 686-702.[Crossref]
  • [33] Ugwu C.U., Aoyagi H., Uchiyama H., Photobioreactors for mass cultivation of algae, Bioresour. Technol., 2008, 99(10), 4021-4028.[Crossref]
  • [34] John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Micro and macroalgal biomass: A renewable source for bioethanol, Bioresour. Technol., 2011, 102(1), 186-193.[Crossref]
  • [35] Jorquera O., Kiperstok A., Sales E.A., Embiruçu M., Ghirardi M.L., Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors, Bioresour. Technol., 2010, 101(4), 1406-1413.[Crossref]
  • [36] Sierra E., Acién F.G., Fernández J.M., García J.L., Gonzlez C., Molina E., Characterization of a flat plate photobioreactor for the production of microalgae, Chem. Eng. J., 2008, 138(1-3), 136-147.
  • [37] Xu L., Weathers P.J., Xiong X.-R., Liu C.-Z., Microalgal bioreactors: challenges and opportunities, Eng. Life Sci., 2009, 9(3), 178-189.[Crossref]
  • [38] Carvalho A.P., Meireles L.A., Malcata F.X., Microalgal reactors: A review of enclosed system designs and performances, Biotechnol. Prog., 2006, 22, 1490-1506.[Crossref]
  • [39] Lund J. W., Direct utilization of geothermal energy. Energies, 2010, 3, 1443-1471.[Crossref]
  • [40] Barbier E., Geothermal energy technology and current status: an overview, Renew. Sustain. Energy Rev., 2002, 6(1-2), 3-65.[Crossref]
  • [41] Andritsos N., Dalabakis P., Karydakis G., Kolios N., Fytikas M., Characteristics of low-enthalpy geothermal applications in Greece. Renew. Energ., 2011, 36, 1298-1305.[Crossref]
  • [42] Andritsos N., Dalabakis P., Karydakis G., Kolios N., Fytikas M., Update and characteristics of low-enthalpy geothermal applications in Greece. Proceed. Europ. Geother. Congr., 2007.
  • [43] Kępińska B., Geothermal energy country update report from Poland, 2010-2014, Proc. World Geother. Cong., 2015, Australia.
  • [44] Tomaszewska B., Szczepański A., Possibilities for the efficient utilization of spent geothermal waters. Environ. Sci. Pollut. Res., 2014, 21, 11409-11417.[Crossref]
  • [45] Kępińska B., Current geothermal activities and prospects in Poland- and overview. Geothermics, 2003, 32, 397-407.[Crossref]
  • [46] Tomaszewska B., Bodzek M., Desalination of geothermal waters using a hybrid UF-RO process. Part II: Membrane scaling after pilot-scale tests, Desalination, 2013, 319, 107-114.
  • [47] Tomaszewska B., Pająk L., Using treated geothermal water to replenish network water losses in a district heating system, Pol. J. Environ. Stud., 2013, 22(1), 243-250.
  • [48] Barbacki A., Classification of geothermal resources in Poland by exergy analysis- Comparative study, Renew. Sustain. Energy Rev., 2012, 16, 123-128.[Crossref]
  • [49] Kanoğlu M., Çengel Y. A., Economic evaluation of geothermal power generation, heating, and cooling, Energy, 1999, 24(6), 501-509.[Crossref]
  • [50] Rosik- Dulewska Cz., Grabda M., Development and yield of vegetables cultivated on substrate heated by geothermal waters part I: Bell pepper, slicing cucumber, tomato, J. Veg. Crop Prod., 2002, 8(1), 133-144.[Crossref]
  • [51] Chowaniec J., “Gorąca kopalina” niecki podhalańskiej na tle innych niecek przytatrzańskich, Biul. Państw. Inst. Geol., 2012, 448, 229-238.
  • [52] Igliński B., Buczkowski R., Kujawski W., Cichosz M., Piechota G., Geoenergy in Poland, Renew. Sustain. Energy Rev., 2012, 16(5), 2545-2557.[Crossref]
  • [53] Długosz P., Podhale (South Poland) geothermal district heating system, Geothermics, 2003, 32(4-6), 527-533.[Crossref]
  • [54] Shalaby T.A., El-Ramady H., Effect of foliar application of bio-stimulants on growth, yield, components, and storability of garlic (Allium sativum L.). Aust. J. Crop Sci., 2014, 8(2), 271-275.
  • [55] Mohamed A. Y., El- Sehrawy O. A. M., Effect of seaweed extract on fruiting of hindy bisinnara mango trees. J. Am. Sci., 2013, 9(6), 537-544.
  • [56] Magyar L., Barancsi Z., Dickmann A., Hrotko K., Application of biostimulators in nursery. Horticulture, 2008, 65(1), 515.
  • [57] Yee N.N., Aye S.M., Htun T.T., Effect of Spirulina on germination, growth, yield and nutritional value of wheat. Universities Res. J., 2012, 5(1), 37-55.
  • [58] Aly M.S., Esawy M.A., Evaluation of Spirulina platensis as bio.stimulator for organic farming systems. J. Gen. Eng. Biotechnol., 2008, 6(2), 1-7.
  • [59] Sahu D., Priyadarshani I., Rath B., Cyanobacteria- as potential biofertilizer. CIBTech J. Micro., 2012, 1, 20-26.
  • [60] Michalak, I., Chojnacka K., Algae as production systems of bioactive compounds. Eng. Life Sci., 2015, 00, 1-17.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.