Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Preparation and characterization of activated carbons from biomass material – giant knotweed (Reynoutria sachalinensis)

Treść / Zawartość
Warianty tytułu
Języki publikacji
Activated carbons from biomass material of giant knotweed Reynoutria sachalinensis (F. Schmidt ex Maxim.) Nakai were obtained. Use of this plant for manufacturing activated carbon has not been studied yet. Therefore, the first activated carbons of giant knotweed origin are described. Both physicochemical (by steam and CO2) and chemical (by KOH) activation methods were applied. Influences of temperature (500, 600, 700 and 800°C), burn-off [10, 25 and 50 wt. % (daf)] and KOH concentration on pores surface area and volume distribution of the obtained activated carbons were explored. Porosity of the elaborated sorbents was determined by benzene and carbon dioxide sorption measurements. Sorbents obtained by steam activation were micro- and mesoporous with surface area and volume of pores increasing with temperature and burn-off to V = 0.351 cm3 g-1 and S = 768 m2 g-1 at 800°C at 50% burn-off. Carbon dioxide activation resulted with notably microporous activated carbons with porous texture parameters also increasing with burn-off to V = 0.286 cm3 g-1 and S = 724 m2 g-1 at 50% burn-off. The highest BET surface area of 2541 m2 g-1 was achieved when chemical (KOH) activation was performed using KOH to char ratio 4:1.

Opis fizyczny
  • Division of
    Chemistry and Technology of Fuels, Faculty of Chemistry,
    Wrocław University of Technology, Wrocław 50-344, Poland
  • Division of
    Chemistry and Technology of Fuels, Faculty of Chemistry,
    Wrocław University of Technology, Wrocław 50-344, Poland
  • Division of
    Chemistry and Technology of Fuels, Faculty of Chemistry,
    Wrocław University of Technology, Wrocław 50-344, Poland
  • [1] Trawczyński J., Kułażyński M., Active carbon monoliths as catalyst supports for scr (selective catalytic reduction) of NOx with ammonia, Coal Science and Technology, 1995, 24, 1803-1806.
  • [2] Lee H.-C., Byamba-Ochir N., Shim W.-G., Balathanigaimani M. S., Moon H., High-performance super capacitors based on activated anthracite with controlled porosity, J. Power Sources, 2015, 275, 668-674.[WoS]
  • [3] Wu M., Guo Q., Fu G., Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells, Powder Technology, 2013, 247, 188-196.[WoS]
  • [4] Sroka Z. J., Kułażyński M., Kaczmarczyk J., Michałowski R., Application of carbon adsorbent to methane storage in fuel tanks of vehicles, Pol. J. Environ. Stud., 2009, 18, 211-215.
  • [5] Dabioch M., Skorek R., Kita A., Janoska P., Pytlakowska K., Zerzucha P. et al., A study on adsorption of metals by activated carbon in a large-scale (municipal) process of surface water purification, Open Chem., 2013, 11, 742-753.
  • [6] Bratek K., Bratek W., Kułażyński M., The utilization of sorbents obtained from miscanthus using steam as the activation agent for wastewaters treatment, Pol. J. Chem. Technol., 2007, 9, 102-105.[Crossref]
  • [7] Bansal R. C., Goyal M., Activated carbon adsorption, CRC Press, New York, 2005.
  • [8] He X., Li R., Qiu J., Xie K., Ling P., Yu M. et al., Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template, Carbon, 2012, 50, 4911–4921.[Crossref][WoS]
  • [9] Zhi M., Yang F., Meng F., Li M., Manivannan A., Wu N., Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires, ACS Sustainable Chem. Eng., 2014, 2, 1592−1598.
  • [10] Tseng R.-L., Wu F.-C., Juang R.-S., Adsorption of CO2 at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins, Sep. Purif. Technol., 2015, 140, 53-60.[WoS]
  • [11] Bratek K., Bratek W., Kułażyński M., Carbon adsorbents from waste ion-exchange resin, Carbon, 2002, 40, 2213-2220.[Crossref]
  • [12] Ali I., Asim M., Khan T. A., Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 2012, 113, 170-183.[WoS]
  • [13] Ioannidou O., Zabaniotou A., Agricultural residues as precursors for activated carbon production - a review, Renew. Sust. Energ. Rev. 2007, 11, 1966-2005.[Crossref][WoS]
  • [14] Vargas D. P., Giraldo L., Moreno-Piraján J. C., Calorimetric study of activated carbons impregnated with CaCl2, Open Chem., 2015, 13, 683-688.
  • [15] Bratek K., Bratek W., Kaczmarczyk J., Kułażyński M., Activated carbons prepared by corn cobs activation in water purification, Pol. J. Environ. Stud., 2005, 14, 115-118.
  • [16] Nowicki P., Kuszyńska I., Przepiórski J., Pietrzak R., The effect of chemical activation method on properties of activated carbons obtained from pine cones, Cent. Eur. J. Chem., 2013, 11, 78-85.[WoS][Crossref]
  • [17] Toscano G., Cimino G., New carbon from low cost vegetal precursors: acorn and cypress cone, Cent. Eur. J. Chem.,2013, 11, 2012-2021.[WoS]
  • [18] Li D., Ma X., Liu X., Yu L., Preparation and characterization of nano-TiO2 loaded bamboo-based activated carbon fibers by H2O activation, BioResources, 2014, 9, 602-612.
  • [19] Zhang Y.-J., Xing Z.-J., Duan Z.-K., Li M., Wang Y., Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste, Appl. Surf. Sci., 2014, 315, 279-286.[WoS]
  • [20] González P. G., Hernández-Quiroz T., García-González L., The use of experimental design and response surface methodologies for the synthesis of chemically activated carbons produced from bamboo, Fuel Process. Technol., 2014, 127, 133-139.[WoS]
  • [21] Banerjee S., Chattopadhyaya M. C., Srivastava V., Sharma Y. C., Adsorption studies of methylene blue onto activated saw dust: kinetics, equilibrium, and thermodynamic studies, Environ. Prog. Sustainable Energy, 2014, 33, 790-799.[Crossref][WoS]
  • [22] Mohan D., Singh K. P., Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse - an agricultural waste, Water Research, 2002, 36, 2304–2318.[Crossref]
  • [23] Patteson J. W., Industrial wastes reduction, Environ. Sci. Technol., 1989, 23,1032-1038.[Crossref]
  • [24] Nowakowski T., Rośliny energetyczne, In: Lisowski A. (Ed.), Technologie zbioru roślin energetycznych, Wydawnictwo SGGW, Warszawa, 2010 (in Polish).
  • [25] Delivering Alien Invasive Species Inventories for Europe (DAISIE) project, (access: 12.02.2015).
  • [26] The Nature Conservation Act of 16 April 2004 (in Polish).
  • [27] Regulation of the Minister for the Environment of 9 September 2011 on the List of alien plant and animal species, which if realesed into the environment could threaten native species (in Polish).
  • [28] McBain J. W., Theories of adsorption and the technique of its measurement, Nature, 1926, 117, 550-551.[Crossref]
  • [29] McBain J. W. , Bakr A. M., A new sorption balance, JACS, 1926, 48, 690-695.[Crossref]
  • [30] Skoulou V., Zabaniotou A., Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production, Renew. Sust. Energ. Rev., 2007, 11, 1698-1719.[Crossref]
  • [31] Mohamed A. R., Mohammadi M., Darzi G. N., Preparation of carbon molecular sieve from lignocellulosic biomass: a review, Renew. Sust. Energ. Rev., 2010, 14, 1591-1599.[Crossref][WoS]
  • [32] Daud W., Ali W., Sulaiman M., Effect of carbonization temperature on the yield and porosity of char produced from palm shell, J. Chem. Technol. Biotechnol., 2001, 76, 1281-1285.[Crossref]
  • [33] Li W., Yang K., Peng J., Zhang L., Guo S., Xia H., Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars, Ind. Crops Prod., 2008, 28, 190-198.[Crossref][WoS]
  • [34] Arriagada R., Bello G., Garcia R., Rodriguez-Reinoso F., Sepulveda-Escribano A., Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties, Micropor. Mesopor. Mater., 2005, 81, 161-167.[Crossref]
  • [35] Molina-Sabio M., Gonzalez M., Rodriguez-Reinoso F., Sepulveda-Escribano A., Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon, Carbon, 1996, 34, 505–509.[Crossref]
  • [36] Rodriguez-Reinso F., Lopez-Gonzalez J. de D., Berenguer C., Activated carbons from almond shell - I. Preparation and characterization by nitrogen adsorption, Carbon, 1982, 20, 513-518.[Crossref]
  • [37] Labus K., Gryglewicz S., Machnikowski J., Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity, Fuel, 2014, 118, 9-15.[Crossref][WoS]
  • [38] Moreno-Piraján J. C., Giraldo J., Activated carbon from bamboo waste modified with iron and its application in the study of the adsorption of arsenite and arsenate, Cent. Eur. J. Chem., 2013, 11, 160-170. [WoS]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.