Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Effects of organic compounds on the macroalgae culture ofAegagropila linnaei

Treść / Zawartość
Warianty tytułu
Języki publikacji
The effects of the impact of four organic compounds (ascorbic acid, biotin, glucose and sucrose) on ash, protein, fiber, fat and amino acid contents in the freshwater Aegagropila linnaei biomass were examined in 7 and 14 days of cultivations in high concentrations of tested compounds (100 mg L-1). The presence of examined organic compounds had a negligible effect on the development of algae and their biomass composition. There were no significant differences in the amino acids composition in the biomass in the presence of organic compounds compared to the test system. However, the increase in ash content was observed irrespective of the cultivation time in the case of all used organic compounds. Only slight differences in crude fat concentration were observed in the case of 7 days cultivation with ascorbic acid, biotin and sucrose, while the highest increase of ash content was observed after 14 days of supplementation with glucose. None of the compounds affected changes in amino acid content in the Aegagropila linnaei biomass. The results suggest that an environment enriched with the test organic compounds had only minimal, or at most short-term, effects on the algal biomass composition.
Słowa kluczowe

Opis fizyczny
  • Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Environmental Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznan, Poland
  • Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89B, 61-614 Poznan, Poland
  • Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89B, 61-614 Poznan, Poland
  • Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Environmental Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznan, Poland
  • Poznan University of Life Science, Faculty of Animal Breeding and Biology, Wolynska 33, 60-637 Poznan, Poland>
  • Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89B, 61-614 Poznan, Poland
  • [1] Crawford R.L., Crawford D.L., Bioremediation: principles and applications. Cambridge University Press, New York, 1996.
  • [2] Jasrotia S., Kansal A., Kishore V.V.N., Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy, Microch. Journal, 2014, 114, 197-202.
  • [3] Maznah W.O.W., Al-Fawwaz A.T., Surif M., Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia, J. of Environ. Scien., 2012, 24, 1386-1393.
  • [4] Parameswari E., Lakshmanan A., Thilagavathi T., Phyco-remediation of heavy metals in polluted water bodies, Electronic J. of Environ., Agricul. and Food Chem., 2010, 9, 808-814.
  • [5] Fabrowska J., Łęska B., Algae and their chelating properties, In: Rybachenko V.I. (Ed.), From molecules to functional architecture, Supramolecular interactions. East Publisher House, Donetsk, 2012.
  • [6] Baran A., Baysal S.H., Sukatar A., Removal of Cr6+ from aqueous solution by some algae, J. of Environ. Biol., 2005, 26, 329-333.
  • [7] Romera E., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A., Comparative study of biosorption of heavy metals using different types of algae, Biores. Technol., 2007, 98, 3344-3353.
  • [8] Rybak A., Messyasz B., Łęska B., Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg), Chemosphere, 2012, 89, 1066-1076.
  • [9] Wang J., Chen C., Biosorbents for heavy metals removal and their future, Biotech. Advan., 2009, 27, 195-226.
  • [10] Lee Y.C., Chang S.P., The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae, Biores. Techn., 2011, 102, 5297-5304.
  • [11] Rangsayatorn N., Upatham E.S., Kruatrachue M., Pokethitiyook P., Lanza G.R., Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium, Environ. Poll., 2002, 119, 45-53.
  • [12] Sternberg S.P.K., Dorn R.W., Cadmium removal using Cladophora in batch, semi-batch and flow reactors, Biores. Techn., 2002, 81, 249-255.
  • [13] Tien C.J., Biosorption of metal ions by freshwater algae with different surface characteristics, Process Biochemistry, 2002, 38, 605-613.
  • [14] Tuzen M., Sari A., Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies, Chem. Engin. J., 2010, 158, 200-206.
  • [15] Laliberte G., Olguin E.J., De La Noue J., Mass cultivation and wastewater treatment using Spirulina. In: Vonshak A. (Ed.). Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor and Francis, London, Bristol and PA, 1997.
  • [16] Rybak A., Messyasz B., Łęska B., Pikosz M., Fabrowska J., Wydajność asymilacji azotu na przykładzie wybranych gatunków roślin wodnych. In: Schroeder G., Grzesiak P. (Ed.). Środowisko i Przemysł, Cursiva, Poznań, 2012.
  • [17] Semple K.T., Cain R.B., Schmidt S., Biodegradation of aromatic compounds by microalgae, FEMS Microbiol. Lett., 1999, 170, 291-300.
  • [18] Katagi T., Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms, Rev Environ Contam. Toxicol. 2010, 204, 1-132.
  • [19] Jin Z.P., Luo K., Zhang S., Zheng Q., Yang H. Bioaccumulation and catabolism of prometryne in green algae, Chemosphere, 2012, 87, 278-284.
  • [20] Andersen R.A., Algal culturing techniques. Elsevier Academic Press, London, 2005.
  • [21] AOAC, Horwitz W., Latimer W., Association of Official Analytical Chemists, Official Methods of Analysis, 18th Edition, Gaithersburg Maryland, USA, 2007.
  • [22] Khuantrairong T., Traichaiyaporn S., The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations, Int J. Agric. Biol. 2011, 13, 297-300.
  • [23] Khuantrairong T., Traichaiyaporn S., Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: Cladophora sp.) by supplementary inorganic phosphate and investigation of its biomass production, Maejo. Int. J. Sci. Technol., 2012, 6, 1-11.
  • [24] Kong W-B., Yang H., Cao Y-T., Song H., Hua S-F, Xia C-G., Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrates production by Chlorella vulgaris in mixotrophic culture, Food Technol. Biotechnol., 2013, 51, 62-69.
  • [25] Bhatnagar A., Chinnasamy S., Singh M., Das K.C., Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters, Appl. Energy, 2011, 88, 3425-3431.[Crossref]
  • [26] Rani G., Changes in protein profile and amino acids in Cladophora vagabunda (Chlorophyceae) in response to salinity stress, J. Appl. Phycol., 2007, 19, 803-807.[Crossref]
  • [27] Berman T., Chava S., Algal growth on organic compounds as nitrogen sources, J. Plankton Res. 1999, 21, 1423-1437. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.