Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Numerical analysis of thermal stresses in a new design of microtubular stack

Treść / Zawartość
Warianty tytułu
Języki publikacji
Microtubular Solid Oxide Fuel Cells (mSOFCs) are one of the most promising and efficient devices that convert chemical energy of fuels into electrical energy. However, mSOFC stacks work at high operating temperature over 650°C, which leads to thermally induced mechanical stresses and in consequence may cause failure of stack components. In order to reduce the local thermal gradients and prevent high stresses in the stack components, it is desirable to study the effect of stack design on its performance. For this purpose a 3D numerical approach was developed to estimate thermal expansion of fuel cell inside an mSOFC stack and to reduce the associated experimental efforts and costs. Initially, a Computational Fluid Dynamics (CFD) model was used to calculate the temperature and species concentration profiles. During the second modeling step temperature profiles were used in the thermo-mechanical model to calculate the thermal stress distribution in the mSOFC stack. The results maximum thermal axial elongation that equals 1.4 mm for the mSOFC stack. The modelled maximum radial elongation was equal to 0.5 mm in the contact areas of the cylindrical housing and manifolds on the fuel inlet side.

Opis fizyczny
  • Faculty of Chemical Technology
    and Engineering, Institute of Chemical Engineering and
    Environmental Protection Processes, West Pomeranian University
    of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology
    and Engineering, Institute of Chemical Engineering and
    Environmental Protection Processes, West Pomeranian University
    of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology
    and Engineering, Institute of Chemical Engineering and
    Environmental Protection Processes, West Pomeranian University
    of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • [1] Fardadi M., Mueller F., Jabbari F., Feedback control of solidoxide fuel cell spatial temperature variation, J. Power Sources,2010, 195, 13, 4222-4233. DOI: 10.1016/j.cherd.2012.09.004.[WoS][Crossref]
  • [2] Vijay P., Hosseini S., Tade M. O., A novel concept forimproved thermal management of the planar SOFC, Chem.Eng. Research & Design, 2013, 91, 560-572. DOI: 10.1016/j.cherd.2012.09.004.[Crossref]
  • [3] Dey T., Singdeo D., Basu R. N., Bose M., Ghosh P. C.,Improvement in solid oxide fuel cell performance throughdesign modifications: an approach based on root causeanalysis, Inter. J. Hydrogen Energy, 2014, 39, 17258-17266.DOI: 10.1016/j.ijhydene.2014.08.025.[Crossref][WoS]
  • [4] Boigues-Munoz C., Santori G., McPhail S., Polonara F.,Thermochemical model and experimental validation of atubular SOFC cell comprised in a 1 kWel stack design for CHPapplications, Int. J. Hydrogen Energy, 2014, 39, 21714-21723.DOI: 10.1016/j.ijhydene.2014.09.021.[Crossref]
  • [5] Al-Masri, Peksen M., Blum L., Stolten D., A 3D CFD modelfor predicting the temperature distribution in a full scaleAPU SOFC short stack under transient operating conditions,Applied Energy, 2014, 135, 539-547. DOI:10.1016/j.apenergy.2014.08.052.[Crossref][WoS]
  • [6] Mounir H., Belaiche M., El Marjani A., El Gharad A., Thermalstress and probability of survival investigation in a multibundleintegrated planar solid oxide fuel cells IP-SOFC(integrated planar solid oxide fuel cell), Energy, 2014, 66, 378-386. DOI: 10.1016/[Crossref]
  • [7] Wang G., Yang Y., Zhang H., Xia W., 3D model of thermos-fluidand electrochemical for planar SOFC, J. Power Sources, 2007,167, 398-405. DOI: 10.1016/j.jpowsour.2007.02.019.[Crossref]
  • [8] Yakabe H., Ogiwara T., Hishinuma M., Yasuda I., 3D modelcalculation for planar SOFC, J. Power Sources, 2001, 102, 144-154. DOI: 10.1016/S0378-7753(01)00792-3.[Crossref]
  • [9] Reckangle K. P., Williford R. E., Chick L. A., Rector D. R.,M. A., Khaleel M. A., Three-dimensional thermos-fluidelectrochemical modeling of planar SOFC stacks, J. PowerSources, 2003, 113, 109-114. PII: S0378-7753(02)00487-1.
  • [10] Ki J., Kim D., Computational model to predict thermal dynamicsof planar solid oxide fuel cell stack during start-up process,J. Power Sources, 2010, 195, 3186-3200. DOI: 10.1016/j.powsour.2009.11.129.[Crossref][WoS]
  • [11] Weil K. S., Koeppel B. J., Comparative finite element analysisof the stress-strain states in three different bonded solid oxidefuel cell seal designs, J. Power Sources, 2008, 180, 343-353.DOI: 10.1016/j.jpowsour.2008.01.093.[Crossref][WoS]
  • [12] Yakabe H., Baba Y., Sakurai T., Yoshitaka Y., Evaluation of theresidual stress for anode-supported SOFCs, J. Power Sources,2004, 135, 9-16. DOI: 10.1016/j.jpowsour.2003.11.049.[Crossref]
  • [13] Nakajo A., Stiller C., Harkegard G., Bolland O., Modelingof thermal stresses and probability of survival of tubularSOFC, J. Power Sources, 2006, 158, 287-294. DOI: 10.1016/j.jpowsour.2005.09.004.[Crossref]
  • [14] Cui D., Cheng M., Thermal stress modeling of anode supportedmicro-tubular solid oxide fuel cell, J. Power Sources, 2009, 192,400-407. DOI: 10.1016/j.jpowsour.2009.03.046.[WoS][Crossref]
  • [15] Serincan M. F., Pasaogullari U., Sammes N. M., Thermalstresses in an operating micro-tubular solid oxide fuel cell,J. Power Sources, 2010, 195, 4905-4914. DOI: 10.1016/j.jpowsour.2009.12.108.[WoS][Crossref]
  • [16] Xue X., Tang J., Sammes N., Du Y., Dynamic modeling ofsingle tubular SOFC combining heat/mass transfer andelectrochemical reaction effects, J. Power Sources, 2005, 142,211-222. DOI: 10.1016/j.jpowsour.2004.11.023.[Crossref]
  • [17] Wei S. S., Wang T. H., Wu J. S., Numerical modeling ofinterconnect flow channel design and thermal stress analysisof a planar anode supported solid oxide fuel cell stack, Energy,2014, 69, 553-561. DOI: 10.1016/[Crossref][WoS]
  • [18] Liu L., Kim G. Y., Chandra A., Modeling of thermal stresses andlifetime prediction of planar solid oxide fuel cell under thermalcycling conditions, J. Power Sources, 2010, 195, 2310-2318.DOI: 10.1016/j.jpowsour.2009.10.064.[WoS][Crossref]
  • [19] Peksen M., 3D thermomechanical behaviour of solid oxide fuelcells operating in different environments, Int. J. HydrogenEnergy, 2013, 38, 13408-13418. DOI: 10.1016/j/ijhydene.2013.07.112.[WoS][Crossref]
  • [20] Peksen M., A coupled 3D thermofluid-thermomechanicalanalysis of a planar type production scale SOFC stack, Int.J. Hydrogen Energy, 2011, 36, 11914-11928. DOI: 10.1016/j/ijhydene.2011.06.045.[WoS][Crossref]
  • [21] Pianko-Oprych P., Kasilova E., Jaworski Z., Proceedings of 11thEuropean SOFC and SOE Forum 2014, (1-4 July 2014, Lucerne,Switzerland), 2014, A1322, 1-10.
  • [22] Pianko-Oprych P., Cell, Stack and System Modelling, SolidOxide Fuel Cell, Lambert Academic Publishing, 2014, ISBN 978-3-659-62295-3.
  • [23] Li J., Lin Z., Effects of electrode composition on theelectrochemical performance and mechanical property ofmicro-tubular solid oxide fuel cell, Intern. J. Hydrogen Energy,2012, 37, 12925-12940. DOI: 10.1016/j.ijhydene.2012.05.075.[Crossref]
  • [24] Anderman Industrial Ceramics Ltd. Zirconia Yttria Stabilised,brochure, (2014).
  • [25] SUAV data, internal project report, 2014.
  • [26] Delette G., Laurencin J., Usseglio-Virett F., Villanova J., BleuetP., Lay-Grindler E., Le Bihan T., Thermo-elastic propertiesof SOFC/SOEC electrode materials determined from threedimensionalmicrostructural reconstructions, Intern. Journalof Hydrogen Energy, 2013, 38, 12379-12391. DOI: 10.1016/j.ijhydene.2013.07.027.[Crossref]
  • [27] Corning MACOR Machinable Glass Ceramic 01, 02, brochure,2014.
  • [28] Haynes International Hastelloy X Alloy, brochure, 2014.
  • [29] Inconel Special Metals Alloy X 750, brochure, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.