Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

A kinetic study on drinking water denitrification using a membrane bioreactor

Treść / Zawartość
Warianty tytułu
Języki publikacji
This study determines the basic parameters of Monod kinetics for microbial growth within a membrane bioreactor using the Zenon ZeeWeed 10 MBR system. The influent nitrate concentration was kept at 70 ± 2 mg L-1 NO3ˉ. During the experiments a constant concentration of activated sludge was maintained at approximately 0.76 g L-1 under anoxic conditions. Sucrose was added to the activated sludge as a carbon source. The Monod kinetic parameters were calculated by numerical interpolation, by considering experimental data. The maximum specific growth rate of the biomass was determined to be 0.31 h-1, half-saturation constant 5.4 mg L-1, and yield coefficient 0.35 mg biomass mg-1 COD. Afterwards, a dynamic simulation was performed within the calculated parameters. The dynamic concentration profiles for substrate and biomass were determined at different dilution rates within the range of 0.8 to 5 d-1.

Opis fizyczny
  • Faculty of Chemistry and
    Chemical Engineering, University of Maribor, Smetanova 17,
    SI–2000, Maribor, Slovenia
  • Faculty of Chemistry and
    Chemical Engineering, University of Maribor, Smetanova 17,
    SI–2000, Maribor, Slovenia
  • Faculty of Chemistry and
    Chemical Engineering, University of Maribor, Smetanova 17,
    SI–2000, Maribor, Slovenia
  • [1] An S., Stone H., Nemati M., Biological removal of nitrate by anoil reservoir culture capable of autotrophic and heterotrophicactivities: Kinetic evaluation and modeling of heterotrophicprocess, J. Hazard. Mater., 2011, 190, 686-693, DOI: 10.1016/j.jhazmat.2011.03.102.[Crossref][WoS]
  • [2] Gómez M.A., González-López J., Hontoria-Garcı́a E., Influence ofcarbon source on nitrate removal of contaminated groundwaterin a denitrifying submerged filter, J. Hazard. Mater., 2000, 80,69-80, DOI: 10.1016/s0304-3894(00)00282-x.[Crossref]
  • [3] Karanasios K.A., Vasiliadou I.A., Pavlou S., Vayenas D.V.,Hydrogenotrophic denitrification of potable water: Areview, J. Hazard. Mater., 2010, 180, 20-37, DOI: 10.1016/j.jhazmat.2010.04.090.[Crossref][WoS]
  • [4] Fernández-Nava Y., Marañón E., Soons J., Castrillón L.,Denitrification of high nitrate concentration wastewater usingalternative carbon sources, J. Hazard. Mater., 2010, 173, 682-688, DOI: 10.1016/j.jhazmat.2009.08.140.[WoS][Crossref]
  • [5] Wąsik E., Bohdziewicz J., Błaszczyk M., Removal of nitrates fromground water by a hybrid process of biological denitrificationand microfiltration membrane, Process Biochem., 2001, 37,57-64, DOI: 10.1016/s0032-9592(01)00177-7.[Crossref]
  • [6] Lee N.M., Welander T., The effect of different carbon sources onrespiratory denitrification in biological wastewater treatment,J. Ferment. Bioeng., 1996, 82, 277-285, DOI: 10.1016/0922-338x(96)88820-9.[Crossref]
  • [7] Shen J., He R., Han W., Sun X., Li J., Wang L., Biologicaldenitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR), J. Hazard. Mater., 2009,172, 595-600, DOI: 10.1016/j.jhazmat.2009.07.045.[WoS][Crossref]
  • [8] Sears K.J., Alleman J.E., Gong W.L., Feasibility of using ultrasonicirradiation to recover active biomass from waste activatedsludge, J. Biotechnol., 2005, 119, 389-399, DOI: 10.1016/j.jbiotec.2005.04.025.[Crossref]
  • [9] Her J.-J., Huang J.-S., Influences of carbon source and C/N ratioon nitrate/nitrite denitrification and carbon breakthrough,Bioresour. Technol., 1995, 54, 45-51, DOI: 10.1016/0960-8524(95)00113-1.[Crossref]
  • [10] Nuhoglu A., Pekdemir T., Yildiz E., Keskinler B., Akay G., Drinkingwater denitrification by a membrane bio-reactor, Water Res.,2002, 36, 1155-1166, DOI: 10.1016/s0043-1354(01)00344-x.[Crossref]
  • [11] Glass C., Silverstein J., Denitrification kinetics of high nitrateconcentration water: pH effect on inhibition and nitriteaccumulation, Water Res., 1998, 32, 831-839, DOI: 10.1016/s0043-1354(97)00260-1.[Crossref]
  • [12] Ravindran V., Tsai H.-H., Williams M.D., Pirbazari M., Hybridmembrane bioreactor technology for small water treatmentutilities: Process evaluation and primordial considerations,J. Membr. Sci., 2009, 344, 39-54, DOI: 10.1016/j.memsci.2009.07.032.[Crossref][WoS]
  • [13] Vacková L., Srb M., Stloukal R., Wanner J., Comparisonof denitrification at low temperature using encapsulatedParacoccus denitrificans, Pseudomonas fluorescens andmixed culture, Bioresour. Technol., 2011, 102, 4661-4666, DOI:10.1016/j.biortech.2011.01.024.[WoS][Crossref]
  • [14] Oh J., Silverstein J., Oxygen inhibition of activated sludgedenitrification, Water Res., 1999, 33, 1925-1937, DOI: 10.1016/s0043-1354(98)00365-0.[Crossref]
  • [15] Sözen S., Çokgör E.U., Orhon D., Henze M., Respirometricanalysis of activated sludge behaviour-II. Heterotrophic growthunder aerobic and anoxic conditions, Water Res., 1998, 32, 476-488, DOI: 10.1016/s0043-1354(97)00210-8.[Crossref]
  • [16] Li X., Chu H.P., Membrane bioreactor for the drinking watertreatment of polluted surface water supplies, Water Res., 2003,37, 4781-4791, DOI: 10.1016/s0043-1354(03)00424-x.[Crossref]
  • [17] McAdam E.J., Judd S.J., Optimisation of dead-end filtrationconditions for an immersed anoxic membrane bioreactor,J. Membr. Sci., 2008, 325, 940-946, DOI: 10.1016/j.memsci.2008.09.032.[Crossref][WoS]
  • [18] Tian J., Liang H., Nan J., Yang Y., You S., Li G., Submergedmembrane bioreactor (sMBR) for the treatment of contaminatedraw water, Chem. Eng. J., 2009, 148, 296-305, DOI: 10.1016/j.cej.2008.08.032.[Crossref][WoS]
  • [19] Vasiliadou I.A., Pavlou S., Vayenas D.V., A kinetic study ofhydrogenotrophic denitrification, Process Biochem., 2006, 41,1401-1408, DOI: 10.1016/j.procbio.2006.02.002.[Crossref]
  • [20] McAdam E.J., Judd S.J., A review of membrane bioreactorpotential for nitrate removal from drinking water, Desalination,2006, 196, 135-148, DOI: 10.1016/j.desal.2006.03.008.[Crossref]
  • [21] Fenu A., Guglielmi G., Jimenez J., Spèrandio M., Saroj D., LesjeanB., et al., Activated sludge model (ASM) based modelling ofmembrane bioreactor (MBR) processes: A critical review withspecial regard to MBR specificities, Water Res., 2010, 44, 4272-4294, DOI: 10.1016/j.watres.2010.06.007.[Crossref][WoS]
  • [22] Akunna J.C., Bizeau C., Moletta R., Nitrate and nitrite reductionswith anaerobic sludge using various carbon sources: Glucose,glycerol, acetic acid, lactic acid and methanol, Water Res., 1993,27, 1303-1312, DOI: 10.1016/0043-1354(93)90217-6.[Crossref]
  • [23] McAdam E.J., Judd S.J., Denitrification from drinking waterusing a membrane bioreactor: Chemical and biochemicalfeasibility, Water Res., 2007, 41, 4242-4250, DOI: 10.1016/j.watres.2007.05.059.[Crossref][WoS]
  • [24] Sison N.F., Hanaki K., Matsuo T., High loading denitrification bybiological activated carbon process, Water Res., 1995, 29, 2776-2779, DOI: 10.1016/0043-1354(95)00119-6.[Crossref]
  • [25] Sison N.F., Hanaki K., Matsuo T., Denitrification with externalcarbon source utilizing adsorption and desorption capabilityof activated carbon, Water Res., 1996, 30, 217-227, DOI:10.1016/0043-1354(95)00118-5.[Crossref]
  • [26] Ergas S.J., Rheinheimer D.E., Drinking water denitrificationusing a membrane bioreactor, Water Res., 2004, 38, 3225-3232,DOI: 10.1016/j.watres.2004.04.019.[Crossref][WoS]
  • [27] Buttiglieri G., Malpei F., Daverio E., Melchiori M., Nieman H.,Ligthart J., Denitrification of drinking water sources by advancedbiological treatment using a membrane bioreactor, Desalination,2005, 178, 211-218, DOI: 10.1016/j.desal.2004.11.038.[Crossref]
  • [28] Nalcaci O.O., Böke N., Ovez B., Potential of the bacterial strainAcidovorax avenae subsp. avenae LMG 17238 and macro algaeGracilaria verrucosa for denitrification, Desalination, 2011, 274,44-53, DOI: 10.1016/j.desal.2011.01.067.[WoS][Crossref]
  • [29] Al-Malack M.H., Determination of biokinetic coefficients of animmersed membrane bioreactor, J. Membr. Sci., 2006, 271,47-58, DOI: 10.1016/j.memsci.2005.07.008.[Crossref]
  • [30] Doran P.M., Bioprocess Engineering Principles, Elsevier Ltd.,Oxford, UK, 2004.
  • [31] Shuler M.L., Kargi F., Bioprocess Engineering, Basic Concepts,2nd ed., Prentice Hall Inc., 2002.
  • [32] Peng J., Xue G., Mathematical Modeling of Hollow-fiberMembrane System in Biological Wastewater Treatment, J. Syst.Cybern. Inf., 2006, 4, 47-52.
  • [33] Di Trapani D., Capodici M., Cosenza A., Di Bella G., ManninaG., Torregrossa M., et al., Evaluation of biomass activity andwastewater characterization in a UCT-MBR pilot plant by meansof respirometric techniques, Desalination, 2011, 269, 190-197,DOI: 10.1016/j.desal.2010.10.061.[Crossref][WoS]
  • [34] Blanch W.H., Clark S.D., Biochemical Engineering, MarcelDekker Inc., New York, USA, 1997.
  • [35] Chung Y.C., Neethling J.B., Viability of anaerobic digestersludge, J. Environ. Eng.-ASCE, 1990, 116, 330–342.
  • [36] APHA 1995, Standards Methods for the Examination of Waterand Wastewater, 19th ed., American Public Health Association,Washington, DC, 1995.
  • [37] ISO 7890-1:1986, Water quality: Determination of nitrate, Part1: 2,6-Dimethylphenol spectrometric method, InternationalOrganization of Standardization, Geneve, 1986.
  • [38] ISO 6777:1984 Water quality: Determination of nitrite, Molecularabsorption spectrometric method, International Organization ofStandardization, Geneve, 1984.
  • [39] ISO 8467:1993, Water quality: Determination of permanganateindex, International Organization of Standardization, Geneve,1993.
  • [40] Tchobanoglous G., Burton F.L., Stensel H.D., Wastewaterengineering, Treatment and Reuse, McGraw Hill, USA, 2003.
  • [41] Vesilind P.A., Wastewater Treatment Plant Design, WaterEnvironment Federation, TJ International Ltd., Cornwall, GreatBritain, 2003.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.