Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Oxidative stress and volatile organic compounds: interplay in pulmonary, cardio-vascular, digestive tract systems and cancer

Treść / Zawartość
Warianty tytułu
Języki publikacji
Oxidative stress (OS) can be defined as an imbalance between antioxidant systems and various pro-oxidants. This loss of balance is closely associated with initiation and development of a wide range of systemic or organ specific diseases. Exhaled breath of healthy humans contains a large number of volatile organic compounds (VOCs) derived from cellular metabolism, released by microorganisms or taken up from the environment. Qualitative or quantitative changes in their composition are associated with diseases and various pathological conditions, also characterized by increased production of reactive oxygen species (ROS), such as superoxide radical, hydrogen peroxide, hydroxyl anion, peroxinitrite, etc. Several volatile organic compounds such as ethane and pentane are direct end-products of the reaction of ROS with various biological compounds (e.g., lipid peroxidation, DNA or protein damage). Being able to accurately identify ROS-generated VOCs could be of particular importance in devising sensitive tests that can diagnose and follow-up oxidative stress-related diseases. This review describes current knowledge on the associations between oxidative stress and free radicals and the release of several marker volatile organic compounds in a number of diseases. A special focus will be placed on such VOCs in the cardiovascular pathologies, pulmonary diseases and gastro-intestinal tract affections.

Opis fizyczny
  • Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy “Carol Davila”, Blvd Eroii Sanitari no 8, Bucharest, Romania
  • ”Victor Babes” National Institute of Pathology, Biochemistry-Proteomics Department, no 99-101 Splaiul Independentei, 050096, Sector 5 Bucharest, Romania
  • Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy “Carol Davila”, Blvd Eroii Sanitari no 8, Bucharest, Romania
  • Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy “Carol Davila”, Blvd Eroii Sanitari no 8, Bucharest, Romania
  • Cardiac Surgery Research Laboratory, Department of Heart Surgery, Innsbruck Medical University, Innrain 66, A-6020 Innsbruck, Austria
  • Breath Research Institute, Leopold-Franzens University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
  • Breath Research Institute, Leopold-Franzens University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
  • Univ.-Clinic for Anesthesia, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
  • Breath Research Institute, Leopold-Franzens University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
  • Univ.-Clinic for Anesthesia, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
  • [1] Agapiou A, Mochalski P, Schmid A, Amann A. Potential applications of volatile organic compounds in safety and security, In: Amann A, Smith D, (Eds.). Volatile Biomarkers: Non-invasive Diagnosis in Physiology and Medicine, Elsevier, Amsterdam, 2013.
  • [2] Amann A, Corradi M, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Expert Rev Mol Diagn, 2011, 11, 207-217.[Crossref]
  • [3] Amann A, Mochalski P, Ruzsanyi V, Broza YY, Haick H. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties. J Breath Res, 2014, 8, 016003.[Crossref]
  • [4] Aoyama I, Calenic B, Imai T, Ii H, Yaegaki K. Oral malodorous compound causes caspase‐8 and‐9 mediated programmed cell death in osteoblasts. J Periodontal Res, 2012, 47, 365-373.[Crossref]
  • [5] Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, et al.; Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer, 2009, 9, 348.[Crossref]
  • [6] Baranska A, Tigchelaar E, Smolinska A, Dallinga JW, Moonen EJ, Dekens JA, et al.; Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. J Breath Res, 2013, 7, 037104.[Crossref]
  • [7] Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN oncology, 2012, 2012.
  • [8] Benard G, Bellance N, Jose C, Rossignol R. Relationships Between Mitochondrial Dynamics and Bioenergetics, In: Lu B, (Ed.), Mitochondrial Dynamics and Neurodegeneration, Springer, Netherlands, 2011.
  • [9] Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontology 2000, 2014, 64, 139-153.
  • [10] Calenic B, Ishkitiev N, Yaegaki K, Imai T, Costache M, Tovaru M, et al.; Characterization of oral keratinocyte stem cells and prospects of its differentiation to oral epithelial equivalents. Rom J Morphol Embryol, 2010, 51, 641-645.
  • [11] Calenic B, Yaegaki K, Kozhuharova A, Imai T. Oral malodorous compound causes oxidative stress and p53-mediated programmed cell death in keratinocyte stem cells. J periodontol, 2010, 81, 1317-1323.[Crossref]
  • [12] Calenic B, Yaegaki K, Ishkitiev N, Kumazawa Y, Imai T, Tanaka T. p53‐Pathway activity and apoptosis in hydrogen sulfide‐exposed stem cells separated from human gingival epithelium. J Periodontal Res, 2013, 48, 322-330.[Crossref]
  • [13] Calenic B, Amann A. Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis, 2014, 6, 357-376.[Crossref]
  • [14] Cao W, Duan Y. Breath analysis: potential for clinical diagnosis and exposure assessment. Clin Chem, 2006, 52, 800-811.[Crossref]
  • [15] D’aiuto F, Nibali L, Parkar M, Patel K, Suvan J, Donos N. Oxidative stress, systemic inflammation, and severe periodontitis. Journal of dental research, 2010, 89, 1241-1246.[Crossref]
  • [16] Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta, 2003, 329, 23-38.
  • [17] Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem, 2006, 52, 601-623.[Crossref]
  • [18] Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med, 1999, 27, 1151-1163.
  • [19] Dragonieri S, Annema JT, Schot R, van der Schee MP, Spanevello A, Carratu P, et al.; An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer, 2009, 64, 166-170.[Crossref]
  • [20] Dryahina K, Španěl P, Pospíšilová V, Sovová K, Hrdlička L, Machková N, et al.; Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 1983-1992.[Crossref]
  • [21] Erhart S, Amann A, Haberlandt E, Edlinger G, Schmid A, Filipiak W, et al.; 3-Heptanone as a potential new marker for valproic acid therapy. Journal of breath research, 2009, 3, 016004.
  • [22] Euler DE, Dave SJ, Guo H. Effect of cigarette smoking on pentane excretion in alveolar breath. Clin Chem, 1996, 42, 303-308.
  • [23] Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, et al.; Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med, 2009, 180, 1076-1082.
  • [24] Filipiak W, Filipiak A, Ager C, Wiesenhofer H, Amann A. Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps. J Breath Res, 2012, 6, 027107.[Crossref]
  • [25] Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C, et al.; Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res, 2012, 6, 036008.[Crossref]
  • [26] Filipiak W, Ruzsanyi V, Mochalski P, Filipiak A, Bajtarevic A, Ager C, et al.; Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J Breath Res, 2012, 6, 036008.[Crossref]
  • [27] Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesenhofer H, et al.; Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol, 2012, 12, 113.[Crossref]
  • [28] Fuchs P, Loeseken C, Schubert JK, Miekisch W. Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer, 2010, 126, 2663-2670.
  • [29] Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, et al.; Volatile organic compounds of lung cancer and possible biochemical pathways. Chemical reviews, 2012, 112, 5949-5966.[Crossref]
  • [30] Hekimi S, Lapointe J, Wen Y. Taking a “good” look at free radicals in the aging process. Trends in cell biology, 2011, 21, 569-576.
  • [31] Herbig J, Muller M, Schallhart S, Titzmann T, Graus M, Hansel A. On-line breath analysis with PTR-TOF. J Breath Res, 2009, 3, 027004.[Crossref]
  • [32] Hietanen E, Bartsch H, Bereziat JC, Camus AM, McClinton S, Eremin O, et al.; Diet and oxidative stress in breast, colon and prostate cancer patients: a case-control study. Eur J Clin Nutr, 1994, 48, 575-586.
  • [33] Ho E, Karimi Galougahi K, Liu C-C, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox biology, 2013, 1, 483-491.
  • [34] Holt DW, Johnston A, Ramsey JD. Breath pentane and heart rejection. J Heart Lung Transplant, 1994, 13, 1147-1148.
  • [35] Hoshi T, Heinemann SH. Regulation of cell function by methionine oxidation and reduction. Journal Physiol, 2001, 531, 1-11.
  • [36] Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, et al.; The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis, 2002, 23, 1781-1789.
  • [37] Hunt J, Yu Y, Burns J, Gaston B, Ngamtrakulpanit L, Bunyan D, et al.; Identification of acid reflux cough using serial assays of exhaled breath condensate pH. Cough, 2006, 2, 3.[Crossref]
  • [38] Hunter G, Xu JC, Biaggi-Labiosa AM, Dutta PK, Mondal SP, Ward BJ, et al. Smart sensor systems for human health breath monitoring applications, In: Amann A, Smith D, (Eds.) Volatile Biomarkers: Non-invasive Diagnosis in Physiology and Medicine. Elsevier, Amsterdam, 2013.
  • [39] Jo C, Ahn D. Production of volatile compounds from irradiated oil emulsion containing amino acids or proteins. J Food Sci, 2000, 65, 612-616.[Crossref]
  • [40] Kasapovic J, Pejic S, Todorovic A, Stojiljkovic V, Pajovic SB. Antioxidant status and lipid peroxidation in the blood of breast cancer patients of different ages. Cell Biochem Funct, 2008, 26, 723-730.[Crossref]
  • [41] King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, et al.; Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res, 2009, 3, 027006.[Crossref]
  • [42] King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A, Teschl G, et al.; Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol, 2010, 267, 626-637.
  • [43] Kirkham PA, Barnes PJ. Oxidative Stress in COPDOxidative Stress in COPD. Chest, 2013, 144, 266-273.
  • [44] Kischkel S, Miekisch W, Sawacki A, Straker EM, Trefz P, Amann A, et al.; Breath biomarkers for lung cancer detection and assessment of smoking related effects--confounding variables, influence of normalization and statistical algorithms. Clin Chim Acta, 2010, 411, 1637-1644.
  • [45] Kneepkens CM, Ferreira C, Lepage G, Roy CC. The hydrocarbon breath test in the study of lipid peroxidation: principles and practice. Clin Invest Med, 1992, 15, 163-186.
  • [46] Kobayashi C, Yaegaki K, Calenic B, Ishkitiev N, Imai T, Ii H, et al.; Hydrogen sulfide causes apoptosis in human pulp stem cells. J Endod, 2011, 37, 479-484.[Crossref]
  • [47] Kohl I, Herbig J, Dunkl J, Hansel A, Daniaux M, Hubalek M. Smokers breath as seen by Proton-Transfer-Reaction Time-of-Flight mass spectrometry (PTR-TOF-MS), In: Amann A, Smith D, (Eds.) Volatile Biomarkers: Non-invasive Diagnosis in Physiology and Medicine. Elsevier, Amsterdam, 2013.
  • [48] Kokoszka J, Nelson RL, Swedler WI, Skosey J, Abcarian H. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis Colon Rectum, 1993, 36, 597-601.[Crossref]
  • [49] Korkmaz GG, Altınoglu E, Civelek S, Sozer V, Erdenen F, Tabak O, et al.; The association of oxidative stress markers with conventional risk factors in the metabolic syndrome. Metabolism, 2013, 62, 828-835.[Crossref]
  • [50] Kumagai T, Kawamoto Y, Nakamura Y, Hatayama I, Satoh K, Osawa T, et al.; 4-Hydroxy-2-nonenal, the end product of lipid peroxidation, is a specific inducer of cyclooxygenase-2 gene expression. Biochem Biophys Res Commun, 2000, 273, 437-441.
  • [51] Lindinger W, Taucher J, Jordan A, Hansel A, Vogel W. Endogenous production of methanol after the consumption of fruit. Alcoholism-Clinical and Experimental Research, 1997, 21, 939-943.[Crossref]
  • [52] Mancino R, Di Pierro D, Varesi C, Cerulli A, Feraco A, Cedrone C, et al.; Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Molecular vision, 2011, 17, 1298.
  • [53] Martinez-Lozano Sinues P, Kohler M, Zenobi R. Human breath analysis may support the existence of individual metabolic phenotypes. PloS one, 2013, 8, e59909.
  • [54] Mazzone PJ. Analysis of volatile organic compounds in the exhaled breath for the diagnosis of lung cancer. Journal of Thoracic Oncology, 2008, 3, 774-780.[Crossref]
  • [55] Mazzone PJ. Exhaled breath volatile organic compound biomarkers in lung cancer. J Breath Res, 2012, 6, 027106.[Crossref]
  • [56] McGrath LT, Patrick R, Silke B. Breath isoprene in patients with heart failure. Eur J Heart Fail, 2001, 3, 423-427.
  • [57] Mendis S, Sobotka PA, Euler DE. Expired hydrocarbons in patients with acute myocardial infarction. Free Radic Res, 1995, 23, 117-122.
  • [58] Mendis S, Sobotka PA, Leja FL, Euler DE. Breath pentane and plasma lipid peroxides in ischemic heart disease. Free Radic Biol Med, 1995, 19, 679-684.
  • [59] Miekisch W, Kischkel S, Sawacki A, Liebau T, Mieth M, Schubert JK. Impact of sampling procedures on the results of breath analysis. J Breath Res, 2008, 2, 026007.[Crossref]
  • [60] Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M, et al.; Blood and breath levels of selected volatile organic compounds in healthy volunteers. The Analyst, 2013, 138, 2134-2145.
  • [61] Mochalski P, King J, Unterkofler K, Amann A. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. Analyst, 2013, 138, 1405-1418.
  • [62] Murata T, Yaegaki K, Qian W, Herai M, Calenic B, Imai T, et al.; Hydrogen sulfide induces apoptosis in epithelial cells derived from human gingiva. J Breath Res, 2008, 2, 017007.[Crossref]
  • [63] Okunieff P, Fenton B, Chen Y. Past, present, and future of oxygen in cancer research. Adv Exp Med Biol, 2005, 566, 213-222.
  • [64] Ondrula D, Nelson RL, Andrianopoulos G, Schwartz D, Abcarian H, Birnbaum A, et al.; Quantitative determination of pentane in exhaled air correlates with colonic inflammation in the rat colitis model. Dis Colon Rectum, 1993, 36, 457-462.[Crossref]
  • [65] Pabst F, Miekisch W, Fuchs P, Kischkel S, Schubert JK. Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study. J Cardiothorac Surg, 2007, 2, 37.[Crossref]
  • [66] Paredi P, Kharitonov SA, Barnes PJ. Elevation of exhaled ethane concentration in asthma. Am J Respir Crit Care Med, 2000, 162, 1450-1454.
  • [67] Paredi P, Kharitonov SA, Leak D, Ward S, Cramer D, Barnes PJ. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2000, 162, 369-373.
  • [68] Pelli MA, Trovarelli G, Capodicasa E, De Medio GE, Bassotti G. Breath alkanes determination in ulcerative colitis and Crohn‘s disease. Dis Colon Rectum, 1999, 42, 71-76.[Crossref]
  • [69] Peng G, Trock E, Haick H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett, 2008, 8, 3631-3635.[Crossref]
  • [70] Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, et al.; Volatile markers of breast cancer in the breath. Breast J, 2003, 9, 184-191.[Crossref]
  • [71] Phillips M, Cataneo RN, Greenberg J, Grodman R, Salazar M. Breath markers of oxidative stress in patients with unstable angina. Heart Dis, 2003, 5, 95-99.[Crossref]
  • [72] Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, Fallon JT, et al.; Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study). J Heart Lung Transplant, 2004, 23, 701-708.[Crossref]
  • [73] Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, et al.; Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat, 2006, 99, 19-21.
  • [74] Phillips M, Cataneo RN, Saunders C, Hope P, Schmitt P, Wai J. Volatile biomarkers in the breath of women with breast cancer. J Breath Res, 2010, 4, 026003.[Crossref]
  • [75] Poli D, Goldoni M, Corradi M, Acampa O, Carbognani P, Internullo E, et al.; Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME-GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 2010, 878, 2643-2651.
  • [76] Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, et al.; 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2002, 166, 490-495.
  • [77] Repetto M, Semprine J, Boveris A. Lipid peroxidation: chemical mechanism, biological implications and analytical determination. Lipid peroxidation, 2012, 1-28.
  • [78] Rodway GW, Choi J, Hoffman LA, Sethi JM. Exhaled nitric oxide in the diagnosis and management of asthma: clinical implications. Chron Respir Dis, 2009, 6, 19-29.[Crossref]
  • [79] Schwoebel H, Schubert R, Sklorz M, Kischkel S, Zimmermann R, Schubert JK, et al.; Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Analytical and bioanalytical chemistry, 2011, 401, 2079-2091.
  • [80] Sedghi S, Keshavarzian A, Klamut M, Eiznhamer D, Zarling EJ. Elevated breath ethane levels in active ulcerative colitis: evidence for excessive lipid peroxidation. Am J Gastroenterol, 1994, 89, 2217-2221.
  • [81] Sinues PM, Kohler M, Zenobi R. Monitoring diurnal changes in exhaled human breath Anal Chem, 2013, 85, 369-373.[Crossref]
  • [82] Smith D, Spanel P, Enderby B, Lenney W, Turner C, Davies SJ. Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7-18 years studied using SIFT-MS. J Breath Res, 2010, 4, 017101.[Crossref]
  • [83] Smith D, Spanel P, Fryer AA, Hanna F, Ferns GA. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J Breath Res, 2011, 5, 022001.[Crossref]
  • [84] Sobotka PA, Gupta DK, Lansky DM, Costanzo MR, Zarling EJ. Breath pentane is a marker of acute cardiac allograft rejection. J Heart Lung Transplant, 1994, 13, 224-229.
  • [85] Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing research reviews, 2013, 12, 376-390.[Crossref]
  • [86] Spanel P, Dryahina K, Smith D. Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4-83 years. J Breath Res, 2007, 1, 011001.[Crossref]
  • [87] Spanel P, Smith D. Recent SIFT-MS Studies of Volatile Compounds in Physiology, Medicine and Cell Biology., In: Amann A, Smith D, (Eds.) Volatile biomarkers: non-invasive diagnosis in physiology and medicine. Elsevier, Amsterdam, 2013.
  • [88] Taucher J, Hansel A, Jordan A, Fall R, Futrell JH, Lindinger W. Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry. Rapid Commun Mass Spectrom. 1997, 11, 1230-1234.
  • [89] Trefz P, Rosner L, Hein D, Schubert JK, Miekisch W. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis. Anal Bioanal Chem, 2013, 405, 3105-3115.
  • [90] Trefz P, Kischkel S, Hein D, James ES, Schubert JK, Miekisch W. Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters. J Chromatogr A. 2012, 1219, 29-38
  • [91] Trefz P, Schmidt M, Oertel P, Obermeier J, Brock B, Kamysek S, et al.; Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal Chem, 2013, 85, 10321-10329.[Crossref]
  • [92] Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 2011, 301, 2181-2190.
  • [93] Van de Kant KD, van der Sande LJ, Jöbsis Q, van Schayck OC, Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: a systematic review. Respir Res. 2012, 13, 117.
  • [94] Vijverberg SJ, Koenderman L, Koster ES, van der Ent CK, Raaijmakers JA, Maitland-van der Zee AH. Biomarkers of therapy responsiveness in asthma: pitfalls and promises. Clin Exp Allergy, 2011, 41, 615-629.[Crossref]
  • [95] Wang T, Pysanenko A, Dryahina K, Spanel P, Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J Breath Res, 2008, 2, 037013.[Crossref]
  • [96] West JD, Marnett LJ. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Toxicol, 2006, 19, 173-194.[Crossref]
  • [97] Yaegaki K, Brunette DM, Tangerman A, Choe Y-S, Winkel EG, Ito S, et al.; Standardization of clinical protocols in oral malodor research. J Breath Res, 2012, 6, 017101. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.