Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching

Treść / Zawartość
Warianty tytułu
Języki publikacji
The time-resolved fluorescence quenching method was applied to determine the micelle aggregation number of cationic single-chain surfactants dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS). The concentration dependence of micelle aggregation number was found to be linear for all investigated surfactants in the concentration range 2‒15 × the value of critical micelle concentration of the respective surfactant. The values of micelle aggregation number were found in the range 30‒77. Different trends in the linear concentration dependence of micelle aggregation number were observed for cationic surfactants and for the anionic surfactant SDS. A small slope value was found for cationic surfactants, while the SDS micelle aggregation number concentration dependence showed significantly a larger slope value. The aggregation number increase with the increasing SDS concentration results in the micellar growth. Results from a simple analysis based on computer models of cationic and anionic surfactant molecules with dodecyl chains supports, the formation of intramicellar hydrogen bonding between surfactant molecules in SDS micelle shell.

Opis fizyczny
  • Department of Chemical Theory
    of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8,
    SK-83232 Bratislava, Slovakia
  • Department of Chemical Theory
    of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8,
    SK-83232 Bratislava, Slovakia
  • Department of Chemical Theory
    of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8,
    SK-83232 Bratislava, Slovakia
  • [1] Floriano M.A., Caponetti E., Panagiotopoulos A., Micellization inModel Surfactant Systems, Langmuir, 1999, 15, 3143-3151.[Crossref]
  • [2] Rodriguez-Guadarrama L.A., Talsania S.K., Mohanty K.K.,Rajagopalan R., Thermodynamics of Aggregation of Amphiphilesin Solution from Lattice Monte Carlo Simulations, Langmuir,1999, 15, 437-446.[Crossref]
  • [3] Watanabe K., Ferrario M., Klein M, Molecular dynamics study ofa sodium octanoate micelle in aqueous solution, J. Phys. Chem.,1988, 92, 819-821.[Crossref]
  • [4] Shelley J., Shelley M., Computer simulation of surfactantsolutions, Curr. Opin. Colloid Interface Sci., 2000, 5, 101-110.[Crossref]
  • [5] Jonsson B., Edholm O., Teleman O., Molecular dynamicssimulations of a sodium octanoate micelle in aqueous solution,J. Chem. Phys., 1986, 85, 2259-2271.
  • [6] Törnblom M., Henriksson U., Ginley M., A Field Dependent 2HNuclear Magnetic Relaxation Study of the Aggregation Behaviorin Micellar Solutions of CTAB and SDS, J. Phys. Chem., 1994, 98,7041-7051.[Crossref]
  • [7] Gharibi H., Sohrabi B., Javadian S., Hashemianzadeh M., Studyof the electrostatic and steric contributions to the free energy ofionic/nonionic mixed micellization, Colloids Surf. A, 2004, 244,187-196.
  • [8] Griffiths P.C., Paul A., Heenan R.K., Penfold J., Ranganathan R.,Bales B.L., Role of Counterion Concentration in DeterminingMicelle Aggregation: Evaluation of the Combination ofConstraints from Small-Angle Neutron Scattering, ElectronParamagnetic Resonance, and Time-Resolved FluorescenceQuenching, J. Phys. Chem. B, 2004, 108, 3810-3816.[Crossref]
  • [9] Peyre V., Bouguerra S., Testard F., Micellization ofdodecyltrimethylammonium bromide in water-dimethylsulfoxidemixtures: A multi-lenght scale approach in model system,J. Colloid Interface Sci., 2013, 389, 164-174.
  • [10] Joshi J.V., Aswal V.K., Goyal P.S., Small angle neutron scatteringstudy of mixed micelles of oppositely charged surfactants.J. Phys., 2008, 71, 1039-1043.
  • [11] Reiss-Husson F., Luzzati V., The Structure of the MicellarSolutions of Some Amphiphilic Compounds in Pure Wateras Determined by Absolute Small-Angle X-Ray ScatteringTechniques, J. Phys. Chem., 1964, 68, 3504-3511.
  • [12] Lebedeva N., Zana R., Bales B.L., A Reinterpretation of theHydration of Micelles of Dodecyltrimethylammonium Bromideand Chloride in Aqueous Solution, J. Phys. Chem. B, 2006, 110,9800-9801.[Crossref]
  • [13] Bales B.L., Zana R., Characterization of Micelles ofQuaternary Ammonium Surfactants as Reaction Media I:Dodeclytrimethylammonium Bromide and Chloride, J. Phys.Chem. B, 2002, 106, 1926-1939.
  • [14] Bales B.L., A Definition of the Degree of Ionization of a MicelleBased on Its Aggregation Number, J. Phys. Chem. B, 2001, 105,6798-6804.[Crossref]
  • [15] Bales B.L., Messina L., Vidal A., Peric M., Nascimento O.R.,Precision Relative Aggregation Number Determinations ofSDS Micelles Using a Spin Probe. A Model of Micelle SurfaceHydration, J. Phys. Chem. B, 1998, 102, 10347-10358.[Crossref]
  • [16] Lebedeva N., Ranganathan R., Bales B.L., Location ofSpectroscopic Probes in Self-Aggregating Assemblies. II. TheLocation of Pyrene and Other Probes in Sodium Dodecyl SulfateMicelles, J. Phys. Chem. B, 2007, 111, 5781-5793.[Crossref]
  • [17] Imae T., Kamiya R., Ikeda S., Formation of spherical and rod-likemicelles of cetyltrimethylammonium bromide in aqueous NaBrsolutions, J. Colloid Interface Sci., 1985, 108, 215-225.[Crossref]
  • [18] Ozeki S., Ikeda S., The sphere-rod transition of micellesof dodecyldimethylammonium bromide in aqueous NaBrsolutions, and the effects of counterion binding on the micellesize, shape and structure, Colloid Polym. Sci., 1984, 262, 409-417.
  • [19] Ikeda S., Ozeki S., Tsunoda M.A., Micelle molecular weight ofdodecyldimethylammonium chloride in aqueous solutions, andthe transition of micelle shape in concentrated NaCl solutions, J.Colloid Interface Sci., 1980, 73, 27-37.[Crossref]
  • [20] Fujio K., Ikeda S., Size of spherical micelles of dodecylpyridiniumbromide in aqueous NaBr solutions, Langmuir, 1991, 7, 2899-2903.[Crossref]
  • [21] Imae T., Ikeda S., Sphere-rod transition of micelles oftetradecyltrimethylammonium halides in aqueous sodiumhalide solutions and flexibility and entanglement of long rodlikemicelles, J. Phys. Chem., 1986, 90, 5216-5223.[Crossref]
  • [22] Hayashi S., Ikeda S., Micelle size and shape of sodium dodecylsulfate in concentrated sodium chloride solutions, J. Phys.Chem., 1980, 84, 744-751.[Crossref]
  • [23] Ikeda S., Hayashi S., Imae T., Rodlike micelles of sodium dodecylsulfate in concentrated sodium halide solutions, J. Phys. Chem.,1981, 85, 106-112.[Crossref]
  • [24] Cabane B., Small Angle Scattering Methods, In: Zana R. Ed.,Surfactant Solutions, Dekker, New York, 1987.
  • [25] Yun F., Xue-Feng L., Young-Mei X., Yang Y., Kun C., Jung-Mok S.,et al., Determination of Critical Micellar Aggregation Numbersby Steady state Fluorescence Probe Method, Acta Phys.-Chim.Sin., 2001, 17, 828-831, (in Chinese).
  • [26] Gracia K., Turner D., Palepu R., Thermodynamic properties ofmicellization of sodium dodecyl sulfate in binary mixtures ofethylene glycol with water, Can. J. Chem., 1996, 74, 1616-1625.[Crossref]
  • [27] Jing-Yuan C., Guo-Ting W., Jin-Zhu L., Investigation on thedetermination of micellar aggregation number by steady-statefluorescence quenching method, Acta Phys.-Chim. Sin., 1993,9, 461-465. (In Chinese).
  • [28] Zana R., Luminiscence Probing Methods, In: Zana R. Ed.,Surfactant Solutions, Dekker, New York, 1987.
  • [29] Turro N.J., Yekta A., Luminiscent Probes for Detergent Solutions:A Simple Procedure for Determination of the Mean AggregationNumber of Micelles, J. Am. Chem. Soc., 1978, 100, 5951-5952.[Crossref]
  • [30] Herrington K.L., Kaler E.W., Miller D.D., Zasadzinski J.A.,Chiruvolu S., Phase Behavior of Aqueous Mixtures ofDodecyltrimethylammonium Bromide (DTAB), J. Phys. Chem.,1993, 97, 13792-13802.
  • [31] Feitosa E., Brazolin M.R.S., Naal R.M.Z.G., Freire de MoraisDel Lama M.P., Lopes J.R., Loh W., Vasilescu M., Structuralorganization of cetyltrimethylammonium sulfate in aqueoussolution: The effect of Na2SO4, J. Colloid Interface Sci., 2006,299, 883-889.
  • [32] Kuperkar K., Abezgaus L., Prasad K., Bahadur P., Formationand Growth of Micelles in Dilute Aqueous CTAB Solutions in thePresence of NaNO3 and NaClO3, J. Surfact. Deterg., 2010, 13,293-303.
  • [33] Ranganathan R., Tran L., Bales B.L., Surfactant- and Salt-Induced Growth of Normal Sodium Alkyl Sulfate Micelles Wellabove Their Critical Micelle Concentrations, J. Phys. Chem. B,2000, 104, 2260-2264.
  • [34] Bales B.L., Almgren M., Fluorescence Quenching of Pyrene byCopper(II) in Sodium Dodecyl Sulfate Micelles. Effect of MicelleSize As Controlled By Surfactant Concentration. J. Phys. Chem.,1995, 99, 15153-15162.[Crossref]
  • [35] Friedrich L.C., Silva V.O., Moreira Jr. P.F., Tcancenco C.M., QuinaF.H., Time-Resolved Fluorescence Quenching Studies of SodiumLauryl Ehter Sulfate Micelles, J. Braz. Chem. Soc., 2013, 24, 241-245.[Crossref]
  • [36] Alargova R.G., Kochijansky I.I., Sierra M.L., Zana R., MicelleAggregation Numbers of Surfactants in Aqueous Solutions: AComparison between the Results from Steady-State and Time-Resolved Fluorescence Quenching, Langmuir, 1998, 14, 5412-5418.[Crossref]
  • [37] Kalyanasundaram K., Thomas J.K., Environmental effects onvibronic band intensities in pyrene monomer fluorescence andtheir application in studies of micellar systems, J. Am. Chem.Soc., 1977, 99, 2039-2044.[Crossref]
  • [38] Dong D.C., Winnik M.A., The Py scale of solvent polarities, Can.J. Chem., 1984, 62, 2560-2565.[Crossref]
  • [39] Berr S.S., Solvent Isotope Effects on AlkyltrimethylammoniumBromide Micelles as a Function of Alkyl Chain Length, J. Phys.Chem., 1987, 91, 4760-4765.[Crossref]
  • [40] Berr S., Jones R.R.M., Johnson Jr. J.S., Effect of counterion on thesize and charge of alkyltrimethylammonium halide micelles asa function of chain length and concentration as determined bysmall-angle neutron scattering, J. Phys. Chem., 1992, 96, 5611-5614.
  • [41] Thalberg K., van Stam J., Lindblad C., Almgren M., LindmanB.J., Time-resolved fluorescence and self-diffusion studies insystems of a cationic surfactant and an anionic polyelectrolyte,J. Phys. Chem., 1991, 95, 8975-8982.
  • [42] Danino D., Talmon Y., Zana R., Alkanediyl-a,wbis(dimethylalkylammonium bromide) Surfactants (DimericSurfactants). 5. Aggregation and Microstructure in AqueousSolutions, Langmuir, 1995, 11, 1448-1456.[Crossref]
  • [43] Gragson D.E., Richmond G.L., Potential Dependent Alignmentand Hydrogen Bonding of Interfacial Water Molecules atCharged Air/Water and Oil/Water Interfaces, J. Am. Chem. Soc.,1998, 120, 366-375.
  • [44] Bruce C.D., Berkowitz M.L., Perera L., Forbes M.D.E., MolecularDynamics Simulation of Sodium Dodecyl Sulfate Micelle inWater: Micellar Structural Characteristics and CounterionDistribution, J. Phys. Chem. B, 2002, 106, 3788-3793.[Crossref]
  • [45] Bruce C.D., Senapati S., Berkowitz M.L., Perera L., ForbesM.D.E., Molecular Dynamics Simulations of Sodium DodecylSulfate Micelle in Water: The Behavior of Water, J. Phys. Chem.B, 2002, 106, 10902-10907.[Crossref]
  • [46] Sammalkorpi M., Karttunen M., Haataja M., Ionic SurfactantAggregates In Saline Solutions: Sodium Dodecyl Sulfate (SDS)in the Presence of Excess Sodium Chloride (NaCl) or CalciumChloride (CaCl2), J. Phys. Chem. B, 2009, 113, 5863-5870.[Crossref]
  • [47] Yoshii N., Okazaki S., A molecular dynamics study of structureand dynamics of surfactant molecules in SDS spherical micelle,Cond. Matt. Phys., 2007, 10, 573-578.
  • [48] Tummala N.R., Striolo A., Role of Counterion Condensation inthe Self-Assembly of SDS at the Water-Graphite Interface, J.Phys. Chem. B, 2008, 112, 1987-2000.[Crossref]
  • [49] Schweighofer K.J., Essmann U., Berkowitz M., Simulation ofSodium Dodecyl Sulfate at the Water-Vapor and Water-CarbonTetrachloride Interfaces at Low Surface Coverage, J. Phys. Chem.B, 1997, 101, 3793-3799.[Crossref]
  • [50] Tang X., Koenig P.H., Larson R.G., Molecular DynamicsSimulations of Sodium Dodecyl Sulfate Micelles in Water-TheEffect of the Force Field, J. Phys. Chem. B, 2014, 118, 3864-3880.[Crossref]
  • [51] Nakagaki M., Yokohama S., Acid catalyzed hydrolysis of sodiumdodecyl sulfate., J. Pharm. Sci., 1985, 74, 1047-1052.[Crossref]
  • [52] Rosen M.J., Surfactants and Interfacial Phenomena, 3rd ed., J.Wiley & Sons New York, 2004.
  • [53] Bethell D., Fessey R.E., Namwindwa E., Roberts D.W., Thehydrolysis of C12 primary alkyl sulfates in concentrated aqueoussolutions. Part 1. General features, kinetic form and mode ofcatalysis in sodium dodecyl sulfate hydrolysis, J. Chem. Soc.Perkin Trans., 2001, 2, 1489-1495.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.