PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Backround: The present review focuses on electrochemical methods for antioxidant capacity and its main contributors assessment. The main reactive oxygen species, responsible for low density lipoprotein oxidation, and their reactivity are reminded. The role of antioxidants in counteracting the factors leading to oxidative stress-related degenerative diseases occurence, is then discussed. Antioxidants can scavenge free radicals, can chelate pro-oxidative metal ions, or quench singlet oxygen. When endogenous factors (uric acid, bilirubin, albumin, metallothioneins, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase) cannot accomplish their protective role against reactive oxygen species, the intervention of exogenous antioxidants (vitamin C, tocopherols, flavonoids, carotenoids etc) is required, as intake from food, as nutritional supplements or as pharmaceutical products. Literature study: The main advantages of electrochemical methods with respect to traditional, more laborious instrumental techniques are described: sensitivity, rapidity, simplicity of the applied analytical procedure which does not require complicated sample pre-treatment etc. The paper reviews minutiously the voltammetric, amperometric, biamperometric, potentiometric and coulometric methods for total antioxidant capacity estimation. For each method presented, the electroactivity and the mechanism of electro-oxidation of antioxidant molecules at various electrodes, as well as the influences on the electroactive properties are discussed. The characteristics of the developed methods are viewed from the perspective of the antioxidant molecule structure influence, as well as from the importance of electrode material and/or surface groups standpoint. The antioxidant molecule-electrode surface interaction, the detection system chosen, the use of modifiers, as well as the nature of the analysed matrix are the factors discussed, which influence the performances of the studied electrochemical techniques. Conclusions: The electrochemical methods reviewed in this paper allow the successful determination of the total antioxidant capacity and of its main contributors in various media: foodstuffs and beverages, biological fluids, pharmaceuticals. The advantages and disadvantages of the electrochemical methods applied to antioxidant content and antioxidant activity assay are treated and interpreted, in the case of various analysed matrixes. Combining advanced materials with classical electrode construction, provides viable results and can constitute an alternative for the future.
EN
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-11-16
zaakceptowano
2015-02-02
online
2015-04-07
Twórcy
  • University of Agronomic Sciences and Veterinary
    Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul
    Independentei, 050097, sector 5, Bucharest, Romania
  • University of Agronomic Sciences and
    Veterinary Medicine of Bucharest, Faculty of Land Reclamation
    and Environmental Engineering, 59 Marasti Blvd, 011464, sector 1,
    Bucharest, Romania
  • University of Agronomic Sciences and Veterinary
    Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul
    Independentei, 050097, sector 5, Bucharest, Romania
Bibliografia
  • [1] Gülçin I., Antioxidant activity of food constituents: an overview,Arch. Toxicol., 2012, 86, 345–391.[Crossref]
  • [2] Beretta G., Facino R.M., Recent advances in the assessment ofthe antioxidant capacity of pharmaceutical drugs: from in vitroto in vivo evidence, Anal. Bioanal. Chem., 2010, 398, 67–75.
  • [3] Jones D.P., Radical-free biology of oxidative stress, Am. J.Physiol. Cell-Physiol., 2008, 296, C849–C868.
  • [4] Davies K.J., Oxidative stress: the paradox of aerobic life,Biochem. Soc. Symp., 1995, 61, 1–31.[Crossref]
  • [5] Gülçin I., Antioxidant and antiradical activities of L-Carnitine,Life Sci., 2006, 78, 803–811.[Crossref]
  • [6] Elmastas M., Gülçin I., Beydemir S., Küfrevioğlu Ő.I., Aboul-Enein H.Y., A study on the in vitro antioxidant activity of juniper(Juniperus communis L.) seeds extracts, Anal. Lett., 2006, 39,47–65.[Crossref]
  • [7] Gülçin I., Antioxidant properties of resveratrol: a structureactivity insigh, Innov. Food. Sci. Emerg., 2010, 11, 210–218.[Crossref]
  • [8] Halliwell B., Gutteridge J.M.C., Free radicals in biology andmedicine, Fourth Edition, Oxford University Press, Oxford,2007.
  • [9] Ames B.N., Shigenaga M.K., Hagen T.M., Oxidants, antioxidants,and the degenerative diseases of aging, Proc. Natl. Acad. Sci.USA, 1993, 90, 7915–7922.[Crossref]
  • [10] Pietta P.G., Flavonoids as antioxidants, J. Nat. Prod., 2000, 63,1035–1042.[Crossref]
  • [11] Korotkova E.I., Voronova O.A., Dorozhko E.V., Study ofantioxidant properties of flavonoids by voltammetry, J. SolidState Electrochem., 2012, 16, 2435–2440.
  • [12] Forest S.E., Stimson M.J., Simon J.D., Mechanism for thephotochemical production of superoxide by quinacrine, J. Phys.Chem. B, 1999, 103, 3963–3964.[Crossref]
  • [13] Shahidi F., Janitha P.K., Wanasundara P.D., Phenolic antioxidants,Crit. Rev. Food Sci. Nutr., 1992, 32, 67–103.[Crossref]
  • [14] Gülçin I., Elias R., Gepdiremen A., Boyer L., Antioxidant activityof lignans from fringe tree (Chionanthus virginicus L.), Eur. FoodRes. Technol., 2006, 223, 759–767.
  • [15] Huang D., Ou B., Prior R.L., The chemistry behind antioxidantcapacity assays, J. Agric. Food Chem., 2005, 53, 1841-1856.[Crossref]
  • [16] Halliwell B., How to characterize a biological antioxidant, FreeRadical Res. Commun., 1990, 9, 1-32.
  • [17] Rimm E.B., Ascherio A., Giovannucci E., Spiegalman D., StampferM., Willett W., Vegetable, fruits, and cereal fiber intake and riskof coronary heart disease among men, J.A.M.A., 1996, 275,447–451.
  • [18] Rimm E.B., Katan M.B., Ascherio A., Stampfer M.J., Willett W.,Relation between intake of flavonoids and risk for coronary heart disease in male health professionals, Ann. Intern. Med.,1996, 125, 384–389.[Crossref]
  • [19] Eberhardt M.V., Lee C.Y., Liu R.H., Antioxidant activity of freshapples, Nature, 2000, 405, 903–904.
  • [20] Ganesan K., Kumar K.S., Rao P.V.S., Comparative assessment ofantioxidant activity in three edible species of green seaweed,Enteromorpha from Okha, northwest coast of India, Innov. Food.Sci. Emerg., 2011, 12, 73–78.[Crossref]
  • [21] Bocco A., Cuvelier M.E., Richard, H., Berset C., Antioxidantactivity and phenolic composition of citrus peel and seedextracts, J. Agric. Food. Chem., 1998, 46, 2123–2129.[Crossref]
  • [22] Paganga G., Miller N., Rice-Evans C.A., The polyphenoliccontent of fruits and vegetables and their antioxidant activities.What does a serving constitute?, Free Radical. Res., 1999, 30,153–162.
  • [23] Pisoschi A.M., Cheregi M.C., Danet A.F., Total antioxidantcapacity of some commercial fruit juices: electrochemicaland spectrophotometrical approaches, Molecules, 2009, 14,480-493.[Crossref]
  • [24] Lanina S.A., Toledo P., Sampels S., Kamal-Eldin A., JastrebovaJ.A., Comparison of reversed-phase liquid chromatographymass spectrometry with electrospray and atmospheric pressurechemical ionization for analysis of dietary tocopherols, J.Chromatogr. A, 2007, 1157, 159-170.
  • [25] Barroso M.F., de-los-Santos-Álvarez N., Lobo-Castañón M.J.,Miranda-Ordieres A.J., Delerue-Matos C., Oliveira M.B.P.P.,Tuñón-Blanco P., DNA-based biosensor for the electrocatalyticdetermination of antioxidant capacity in beverages, Biosens.Bioelectron., 2011, 26, 2396–2401.[Crossref]
  • [26] Vertuani S., Angusti A., Manfredini S., The antioxidants and proantioxidantsnetwork: an overview, Curr. Pharm. Des., 2004, 10,1677–1694.[Crossref]
  • [27] Dopico-Garcìa M.S., Lòpez-Vilarinõ J.M., González- RodríguezM.V., Determination of antioxidant migration level from lowdensitypolyethylene films into food simulants, J. Chromatogr.A, 2003, 1018, 53-62.
  • [28] Litescu S.C., Sandra A.V., Eremia S.A.V., Diaconu M., Tache A.,Radu G.L., Biosensors applications on assessment of reactiveoxygen species and antioxidants, chapter 5, in Environmentalbiosensors, Edited by Vernon Somerset, In Tech Rijeka Croatia,2011.
  • [29] Lino F.M.A., de Sá L.Z., Torres I.M.S., Rocha M.L., Dinis T.C.P.,Ghedini P.C., Somerset V.S., Gil E.S., Voltammetric andspectrometric determination of antioxidant capacity of selectedwines, Electrochim. Acta, 2014, 128, 25-31.[Crossref]
  • [30] Pellegrini N., Serafini S., Del Rio S.D., Bianchi M., Totalantioxidant capacity of spices, dried fruits, nuts, pulses, cerealsand sweets consumed in Italy assessed by three different invitro assays, Mol. Nutr. Food.Res., 2006, 50, 1030–1038.[Crossref]
  • [31] Hu F.B., Plant-based foods and prevention of cardiovasculardisease: an overview, Am. J. Clin. Nutr., 2003, 78, 544-551.
  • [32] McCullough M.L., Robertson A.S., Chao A., Jacobs E.J., StampferM.J., Jacobs D.R., Diver W.R., Cale E.E., Thun M.J., A prospectivestudy of whole grains, fruits, vegetables and colon cancer risk,Cancer Cause Control., 2003, 14, 959-970.[Crossref]
  • [33] Houston M., Nutrition and nutraceutical supplements forthe treatment of hypertension: Part I: Review Paper., J. Clin.Hypertens., 2013, 15, 752-757.
  • [34] Mello L.D., Kubota L.T., Biosensors as a tool for the antioxidantstatus evaluation, Talanta, 2007, 72, 335–348.[Crossref]
  • [35] MacDonald-Wicks L.K., Wood L.G., Garg M.L., Methodology forthe determination of biological antioxidant capacity in vitro: areview, J. Sci. Food Agric., 2006, 86, 2046–2056.[Crossref]
  • [36] Svork, L., Determination od caffeine: a comprehensive reviewon electrochemical methods, Int. J. Electrochem. Sci., 2013, 8,5755-5773.
  • [37] Pisoschi A.M., Negulescu Gh.P., Pisoschi A., Ascorbic aciddetermination by an amperometric ascorbate oxidase-basedbiosensor, Rev. Chim. (Bucharest), 2010, 61, 339-344.
  • [38] Pisoschi A.M., Pop A., Negulescu Gh.P., Pisoschi A.,Determination of ascorbic acid content of some fruit juicesand wine by voltammetry performed at Pt and Carbon PasteElectrodes, Molecules, 2011, 16, 1349-1365.[Crossref]
  • [39] de Lima A.A., Sussuchi E.M., de Giovani W.F., Electrochemicaland antioxidant properties of anthocyanins and anthocyanidins,Croat. Chem. Acta, 2007, 80, 29-34.
  • [40] Pisoschi A.M., Danet A.F., Kalinowski S., Ascorbic aciddetermination in commercial fruit juice samples by cyclicvoltammetry, J. Autom. Methods Manag. Chem., Volume 2008,Article ID 937651, 8 pages, doi:10.1155/2008/937651.[Crossref]
  • [41] Arteaga J.F., Ruiz-Montoya M., Palma A., Alonso-Garrido G.,Pintado S., Rodríguez-Mellado J.M., Comparison of the simplecyclic voltammetry (CV) and DPPH assays for the determinationof antioxidant capacity of active principles, Molecules, 2012, 17,5126-5138.[Crossref]
  • [42] Kounaves S.P., Voltammetric techniques, Ch. 37, in F.A. Settle(Ed.) Handbook of instrumental techniques for analyticalchemistry, Prentice Hall, Upper Saddle River, New Jersey, 1997.
  • [43] Behfar A.A., Sadeghi N., Jannat B., Oveisi M.R., Determinationof L- ascorbic acid in plasma by voltammetric method, Iran. J.Pharm. Res., 2010, 9, 123-128.
  • [44] Wawrzyniak J., Ryniecki A., Zembrzuski W., Application ofvoltammetry to determine vitamin C in apple juices, Acta Sci.Pol. Technol. Aliment., 2005, 42, 5–16.
  • [45] Kilmartin P.A., Zou H.L., Waterhouse A.L., A cyclic voltammetrymethod suitable to characterizing antioxidant properties of wineand wine phenolics, J. Agric. Food Chem., 2001, 49, 1957–1965.[Crossref]
  • [46] Bortolomeazzi R., Sebastianutto N., Toniolo R., Pizzariello A.,Comparative evaluation of the antioxidant capacity of smokeflavouring phenols by crocin bleaching inhibition, DPPH radicalscavenging and oxidation potential, Food Chem., 2007, 100,1481–1489.[Crossref]
  • [47] Samra M.A., Chedea V.S., Economou A., Calokerinos A.,Kefalas P., Antioxidant/prooxidant properties of modelphenolic compounds: part I. studies on equimolar mixtures bychemiluminescence and cyclic voltammetry, Food Chem., 2011,125, 622–629.[Crossref]
  • [48] Yakovleva K.E., Kurzeev S.A., Stepanova E.V., Fedorova T.V.,Kuznetsov B.A., Koroleva O.V., Characterization of plant phenoliccompounds by cyclic voltammetry, Appl. Biochem. Microbiol.,2007, 43, 661–668.[Crossref]
  • [49] Chevion S., Roberts M.A., Chevion M., The use of cyclicvoltammetry for the evaluation of antioxidant capacity, FreeRad. Biol. Med., 2000, 28, 860–870.
  • [50] Bott A.W., Practical problems in voltammetry 2. Electrodecapacitance, Curr.Sep. 1993, 12, 10-13.
  • [51] Marken F., Neudeck A., Bond A.M., Cyclic voltammetry, Ch II.1. inF. Scholz (Edts), Electroanalytical methods-guide to experimentsand applications, Springer, 2009, p.62.
  • [52] Kilmartin P.A., Zou H.L., Waterhouse A.L., Correlation of winephenolic composition versus cyclic voltammetry response, Am.J. Enol. Viticult., 2002, 53, 294–302.
  • [53] Chevion S., Chevion M., Boon Chock P., Beecher G.R.,Antioxidant capacity of edible plants: Extraction protocol anddirect evaluation by cyclic voltammetry, J. Med. Food, 1999, 2,1–10.[Crossref]
  • [54] Campanella L., Martini E., Rita G., Tomassetti M., Antioxidantcapacity of dry vegetal extracts checked by voltammetricmethod, J. Food Agric. Environ., 2006, 4, 135-144.
  • [55] Zielinska D., Szawara-Nowak D., Zielinski H., Comparison ofspectrophotometric and electrochemical methods for theevaluation of the antioxidant capacity of buckwheat productsafter hydrothermal treatment, J. Agric. Food Chem., 2007, 55,6124-6131.[Crossref]
  • [56] Chevion S., Berry E.M., Kitrossky N., Kohen R., Evaluation ofplasma low molecular weight antioxidant capacity by cyclicvoltammetry, Proceedings of the International Meeting on FreeRadicals in Health and Disease, Istanbul, 1995, abstract no.300.
  • [57] Chevion S., Berry E.M., Kitrossky N., Kohen R., Evaluation ofplasma low molecular weight antioxidant capacity by cyclicvoltammetry, Free Radic. Biol. Med., 1997, 22, 411–421.
  • [58] Chevion S., Hofmann M., Ziegler R., Chevion M., Nawroth P.P.,The antioxidant properties of thioctic acid: characterization bycyclic voltammetry, Biochem. Mol. Biol. Int., 1997, 41, 317–327.
  • [59] Chevion S., Chevion M., Antioxidant status and human health -use of cyclic voltammetry for the evaluation of the antioxidantcapacity of plasma and of edible plants, Ann. N.Y. Acad. Sci.,2000, 899, 308-325.
  • [60] Chevion S., Or R., Berry E.M., The antioxidant status of patientssubjected to total body irradiation, Biochem. Mol. Biol. Int.,1999, 47, 1019–1027.
  • [61] U.S. Department of Agriculture, Agricultural Research Service.2013. USDA National Nutrient Database for Standard Reference,Release 26. Nutrient Data Laboratory Home Page, URL: http://www.ars.usda.gov/ba/bhnrc/nd, accessed 15 oct. 2014.
  • [62] Ruffien-Ciszak A., Gros P., Comtat M., Schmitt A-M., Questel E.,Casas C., Redoules D., Exploration of the global antioxidantcapacity of the stratum corneum by cyclic voltammetry, J. Pharm.Biomed. Anal., 2006, 40, 162–167.[Crossref]
  • [63] Ziyatdinova G.K., Budnikov Ć.H.C., Pogorel’tzev Ć.V.I.,Electrochemical determination of the total antioxidant capacityof human plasma, Anal. Bioanal. Chem., 2005, 381, 1546–1551.
  • [64] Korotkova E.I., Karbainov Y.A., Shevchuk A.V., Study ofantioxidant properties by voltammetry, J. Electroanal. Chem.,2002, 518, 56–60.
  • [65] Photinon K., Chalermchart Y., Khanongnuch C., Wang S-H., LiuCh-Ch., A thick-film sensor as a novel device for determinationof polyphenols and their antioxidant capacity in white wine,Sensors, 2010, 10, 1670-1678.[Crossref]
  • [66] Roginsky V., de Beer D., Harbertson J.F., Kilmartin P.A., BarsukovaT., Adams D.O., The antioxidant activity of Californian red winesdoes not correlate with wine age, J. Sci. Food Agric., 2006, 86,834–840.[Crossref]
  • [67] Makhotkina O., Kilmartin P.A., The use of cyclic voltammetryfor wine analysis: determination of polyphenols and free sulfurdioxide, Anal. Chim. Acta, 2010, 668, 155–165.
  • [68] Makhotkina O., Kilmartin P.A., Uncovering the influence ofantioxidants on polyphenol oxidation in wines using anelectrochemical method: cyclic voltammetry, J. Electroanal.Chem., 2009, 633, 165–174.
  • [69] Sousa W.R., da Rocha C., Cardoso C.L., Silva D.H.S., ZanoniM.V.B., Determination of the relative contribution of phenolicantioxidants in orange juice by voltammetric methods, J. FoodCompos. Anal., 2004, 17, 619–633.[Crossref]
  • [70] Simic A., Manojlovic D., Segan D., Todorovic M., Electrochemicalbehavior and antioxidant and prooxidant activity of naturalphenolics, Molecules, 2007, 12, 2327-2340.[Crossref]
  • [71] Ahmed S., Tabassum S., Shakeel F., Khan A.Y., A facileelectrochemical analysis to determine antioxidant activity offlavonoids against DPPH radical, J. Electrochem. Soc., 2012,159, F103-F109.
  • [72] Masek A., Zaborski M., Chrzescijanska E., Electrooxidation offlavonoids at platinum electrode studied by cyclic voltammetry,Food Chem., 2011, 127, 699–704.[Crossref]
  • [73] Piljac-Zegarac J., Valek L., Stipcevic T., Martinez S.,Electrochemical determination of antioxidant capacity of fruittea infusions, Food Chem., 2010, 121, 820–825.[Crossref]
  • [74] Waterhouse D.S., Bronwen G.S., O’Connor C.J., Melton L.D.,Effect of raw and cooked onion dietary fibre on the antioxidantactivity of ascorbic acid and quercetin, Food Chem., 2008, 111,580–585.[Crossref]
  • [75] Masek A., Chrzescijanska E., Kosmalska A., Zaborski M.,Antioxidant activity determination in Sencha and Gun powdergreen tea extracts with the application of voltammetry andUV-VIS spectrophotometry, C. R. Chim., 2012, 15, 424–427.
  • [76] Naumova G., Maksimova V., Mirceski V., Ruskovska T., KolevaG.L., Gulaboski R., Rapid estimation of antioxidant capacityof some medicinal plants: electrochemical and photometricapproaches, in: 8th Conference on medicinal and aromaticplants of southeast european countries, 19-22 May 2014, Durres,Albania. URL: http://eprints.ugd.edu.mk/id/eprint/11079,accessed 07.11.2014
  • [77] Zielinska D., Wiczowski W., Piskula M.K., Determination ofthe relative contribution of quercetin and its glucosides tothe antioxidant capacity of onion by cyclic voltammetry andspectrophotometric methods, J. Agric. Food Chem., 2008, 56,3524–3531.[Crossref]
  • [78] Kondo T., Sakai K., Watanabe T., Einaga Y., Yuasa M.,Electrochemical detection of lipophilic antioxidants with highsensitivity at boron-doped diamond electrode, Electrochim.Acta, 2013, 95, 205-211.[Crossref]
  • [79] Tyurin V.Yu., Meleshonkova N.N., Dolganov A.V., GlukhovaA.P., Milaeva E.R., Electrochemical method in determination ofantioxidative activity using ferrocene derivatives as examples,Russ. Chem. Bul., 2011, 60, 647-655.[Crossref]
  • [80] Ziyatdinova G.K., Nizamova A.M., Budnikov H.C., Voltammetricdetermination of curcumin in spices, J. Anal. Chem., 2012, 67,591–594.[Crossref]
  • [81] Apetrei C., Apetrei I.M., De Saja J.A., Rodriguez-Mendez M.L.,Carbon paste electrodes made from different carbonaceousmaterials: Application in the study of antioxidants, Sensors,2011, 11, 1328-1344.[Crossref]
  • [82] de Beer D., Harbertson J.F., Kilmartin P.A., Roginsky V., BarsukovaT., Adams D.O., Waterhouse A.L., Phenolics: a comparisonof diverse analytical methods, Am. J. Enol. Vitic., 2004, 55,389-399.
  • [83] Blasco A.J., Crevillen A.G., Gonzalez M.C., Escarpa A., Directelectrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems, Electroanalysis,2007, 19, 2275–2286.[Crossref]
  • [84] Makhotkina O., Kilmartin P.A., The phenolic compositionof Sauvignon blanc juice profiled by cyclic voltammetry,Electrochim. Acta, 2012, 83, 188–195.[Crossref]
  • [85] Sochor J., Dobes J., Krystofova O., Ruttkay-Nedecky B., Babula P.,Pohanka M., Jurikova T., Zitka O., Adam V., Klejdus B., Kizek R.,Electrochemistry as a tool for studying antioxidant properties,Int. J. Electrochem. Sci., 2013, 8, 8464–8489.
  • [86] Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., KrejcovaL., Trnkova L., Sochor J., Pohanka M., Hubalek J., Beklova M.,Vrba R., Kizek R., Electrochemical analysis of lead toxicosis invultures, Int. J. Electrochem. Sci., 2011, 6, 5980-6010.
  • [87] Sochor J., Hynek D., Krejcova L., Fabrik I., Krizkova S., GumulecJ., Adam V., Babula P., Trnkova L., Stiborova M., Hubalek J.,Masarik M., Binkova H., Eckschlager T., Kizek R., Study ofmetallothionein role in spinocellular carcinoma tissues of headand neck tumours using Brdicka Reaction, Int. J. Electrochem.Sci., 2012, 7, 2136-2152.
  • [88] Aguirre M.J, Chen Yo.Y., Isaacs M., Matsuhiro B., Mendoza L.,Torres S., Electrochemical behaviour and antioxidant capacityof anthocyanins from Chilean red wine, grape and raspberry,Food Chem., 2010, 121, 44–48.[Crossref]
  • [89] Blasco A.J., Gonzalez M.C., Escarpa A., Electrochemical approachfor discriminating and measuring predominant flavonoids andphenolic acids using differential pulse voltammetry: towards anelectrochemical index of natural antioxidants, Anal. Chim. Acta,2004, 511, 71-81.
  • [90] Diculescu V.C., Vivan M., Brett A.M.O., Voltammetric behavior ofantileukemia drug glivek. Part III: In situ DNA oxidative damageby the glivek electrochemical metabolite, Electroanalysis, 2006,18, 1963-1970.[Crossref]
  • [91] Seruga M., Novak I., Jakobek L., Determination of polyphenolscontent and antioxidant activity of some red wines by differentialpulse voltammetry, HPLC and spectrophotometric methods,Food Chem., 2011, 124, 1208–1216.[Crossref]
  • [92] Janeiro P., Oliveira Brett A.M., Catechin electrochemical oxidationmechanisms, Anal. Chim. Acta, 2004, 518, 109–115.
  • [93] Souza L.P., Calegari F., Zarbin A.J.G., Marcolino-Júnior L.H.,Bergamini M.F., Voltammetric determination of the antioxidantcapacity in wine samples using a carbon nanotube modifiedelectrode, J. Agric. Food Chem., 2011, 59, 7620−7625.[Crossref]
  • [94] Shpigun L.K., Arharova M.A., Brainina K.Z., Ivanova A.V., Flowinjection potentiometric determination of total antioxidantactivity of plant extracts, Anal. Chim. Acta, 2006, 573-574,419–426.
  • [95] Yilmaz U.T., Kekillioglu A., Mert R., Determination of gallic acidby differential pulse polarography: application to fruit juices, J.Anal. Chem., 2013, 68, 1064-1069.[Crossref]
  • [96] Litescu S.C., Radu G.L., Estimation of the antioxidative propertiesof tocopherols – an electrochemical approach, Eur. Food Res.Technol., 2000, 211, 218-221.
  • [97] Shapoval G.S., Kruglyak O.S., Electrochemical modeling ofantioxidants action and determination of their activity, Russ. J.Gen. Chem., 2011, 81, 1442–1448.[Crossref]
  • [98] Zhang G., Yang F., Gao M., Fang X., Liu L., Electro-Fenton degradation of azo dye using polypyrrole/anthraquinonedisulphonate composite film modified graphitecathode in acidic aqueous solutions, Electrochim. Acta, 2008,53, 5155-5161.[Crossref]
  • [99] Dubinina E.E., Anti-oxidant system of blood plasma, Ukr.Biokhim. Zh., 1992, 64, 3-15.
  • [100] May L.M., Qu Z., Morrow J.D., Mechanisms of ascorbic acidrecycling in human erythrocytes, Biochim. Biophys. Acta, 2001,1528, 159-166.
  • [101] Wincler B.S., Unequivocal evidence in support of thenonenzymatic redox coupling between glutathione/glutathionedisulfide and ascorbic acid/dehydroascorbic acid, Biochim.Biophys. Acta, 1992, 1117, 287-290.
  • [102] de-los-Santos-Alvarez N., de-los-Santos-Alvarez P., Lobo-Castanon M.J., Lopez R., Miranda-Ordieres A.J., Tunon-BlancoP., Electrochemical oxidation of guanosine and adenosine: twoconvergent pathways, Electrochem. Commun., 2007, 9, 1862–1866.
  • [103] Skeva, E., Girousi, S., A study of the antioxidative behaviorof phenolic acids, in aqueous herb extract using a dsDNAbiosensor, Cent. Eur. J. Chem., 2012, 10, 1280-1289.
  • [104] Laborda E., Molina A., Li Q., Batchelor-McAuley C., ComptonR.G., Square wave voltammetry at disc microelectrodes forcharacterization of two electron redox processes, Phys. Chem.Chem. Phys., 2012, 14, 8319-8327.[Crossref]
  • [105] Viswanathan V., Hansen H.A., Rossmeisl J., Jaramillo T.F., PitschH., Norskov J.K., Simulating linear sweep voltammetry from firstprinciples:application to electrochemical oxidation of water onPt(111) and Pt3Ni(111), J. Phys. Chem. C, 2012, 116, 4698-4704.[Crossref]
  • [106] O’Connor J.J., Lowry J.P., A comparison of the effects of thedopamine partial agonists aripiprazole and (−)-3-PPP withquinpirole on stimulated dopamine release in the rat striatum:studies using fast cyclic voltammetry in vitro, Eur. J. Pharmacol.,2012, 686, 60-65.
  • [107] Boudreau P.A., Perone S.P., Quantitative resolution of overlappedpeaks in programmed potential-step voltammetry, Anal. Chem.,1979, 51, 811-817.[Crossref]
  • [108] Dogan-Topal B., Ozkan S.A., Uslu B., The analytical applicationsof square wave voltammetry on pharmaceutical analysis,TOCBMJ Open Chemical & Biomedical Methods Journal, 2010,3, 56-73.
  • [109] Dobes J., Zitka O., Sochor J., Ruttkay-Nedecky B., Babula P.,Beklova M., Kynicky J., Hubalek J., Klejdus B., Kizek R., Adam V.,Electrochemical tools for determination of phenolic compoundsin plants, a review, Int. J. Electrochem. Sci., 2013, 8, 4520–4542.
  • [110] Wang Y., Calas-Blanchard C., Cortina-Puig M., Baohong L., MartyJ-L., An electrochemical method for sensitive determination ofantioxidant capacity, Electroanalysis, 2009, 21, 1395 –1400.[Crossref]
  • [111] Shay K.P., Moreau R.F., Smith E.J., Hagen T.M., Is a lipoic acida scavenger of reactive oxigen species in vivo? Evidence for itsinitiation of stress signaling pathways that promote endogenousantioxidant capacity, IUMBM Life, 2008, 60, 362-367.
  • [112] dos Santos Raymundo M., da Silva Paula, M.M., Franco C., FettR., Quantitative determination of the phenolic antioxidantsusing voltammetric techniques, LWT Food Sci. Technol., 2007,40, 1133–1139.[Crossref]
  • [113] Tougas T.P., Jannetti J.M., Collier W.G., Theoretical andexperimental response of biamperometric detector for flowinjection analysis, Anal. Chem., 1985, 57, 1377-1381.[Crossref]
  • [114] Milardovic S., Ivekovic D., Rumenjak V., Grabaric B.S., Use ofDPPH• / DPPH redox couple for biamperometric determinationof antioxidant activity, Electroanalysis, 2005, 17, 1847-1853.[Crossref]
  • [115] Milardovic S., Kerekovic I., Derrico R., Rumenjak V., A novelmethod for flow injection analysis of total antioxidant capacityusing enzymatically produced ABTS•+ and biamperometricdetector containing interdigitated electrode, Talanta, 2007, 71,213–220.[Crossref]
  • [116] Milardovic S., Kerekovic I., Rumenjak V., A flow injectionbiamperometric method for determination of total antioxidantcapacity of alcoholic beverages using bienzymatically producedABTS∙+, Food Chem., 2007, 105, 1688-1694.[Crossref]
  • [117] Magalhaes L.M., Santos M., Segundo M.A., Reis S., Lima J.L.F.C.,Flow injection based methods for fast screening of antioxidantcapacity, Talanta, 2009, 77, 1559-66.[Crossref]
  • [118] de Queiroz Ferreira R., Avaca L.A., Electrochemical determinationof the antioxidant capacity: the ceric reducing/antioxidantcapacity (CRAC) assay, Electroanalysis, 2008, 20, 1323–1329.[Crossref]
  • [119] Scheller F., Schubert F., Biosensors, Elsevier, Amsterdam, 1992.
  • [120] Blum L., Coulet P. (Eds), Biosensor principles and application,Marcel Dekker Inc., New York, 1991.
  • [121] Dzyadevych S.V., Arkhypova V.N., Soldatkin A.P., ElskayaA.V., Martelet C., Jaffrezic-Renault N., Amperometric enzymebiosensors: past, present and future, ITBM-RBM, 2008, 29,171–180.
  • [122] Chen J., Lindmark-Mansson H., Gorton L., Åkesson B., Antioxidantcapacity of bovine milk as assayed by spectrophotometric andamperometric methods, Int. Dairy J., 2003, 13, 927–935.[Crossref]
  • [123] Lates V., Marty J.-L., Popescu I.C., Determination of antioxidantcapacity by using xanthine oxidase bioreactor coupled withflow-through H2O2 amperometric biosensor, Electroanalysis,2011, 23, 728–736.
  • [124] Cortina-Puig M., Scangas A.C.H., Marchese Z.S., AndreescuS., Marty J.-L., Calas-Blanchard C., Development of a xanthineoxidase modified amperometric electrode for the determinationof the antioxidant capacity, Electroanalysis, 2010, 22, 2429–2433.[Crossref]
  • [125] Campanella L., Bonanni A., Favero G., Tomassetti M.,Determination of antioxidant properties of aromatic herbs,olives and fresh fruit using an enzymatic sensor, Anal. Bioanal.Chem., 2003, 375, 1011–1016.
  • [126] Campanella L., Gatta T., Gregori E., Tomassetti M., Determinationof antioxidant capacity of papaya fruit and papaya-based foodand drug integrators, using a biosensor device and otheranalytical methods, Monatsh. Chem., 2009, 140, 965–972.[Crossref]
  • [127] Fatima Barroso M., de-los-Santos-Álvarez N., Delerue-Matos C.,Oliveira M.B.P.P., Towards a reliable technology for antioxidantcapacity and oxidative damage evaluation: electrochemical(bio)sensors, Biosens. Bioelectron., 2011, 30, 1–12.[Crossref]
  • [128] Cortina-Puig M., Prieto-Simón B., Campas, M., Calas-BlanchardC., Marty J.-L., Determination of the antioxidants’ ability toscavenge free radicals using biosensors, in Bio-farms fornutraceuticals: functional food and safety control by biosensors,Ch. 16, edited by M. T. Giardi, G. Rea and B. Berra, SpringerScience+Business Media LLC, Landes Bioscience, New York,2010.
  • [129] Tammeveski K., Tenno T.T., Mashirin A.A., Hillhouse E.W.,Manning P., Mc Neil C.J., Superoxide electrode based oncovalently immobilized cytochrome c: modelling studies, FreeRadical Biol. Med., 1998, 25, 973-978.
  • [130] Ignatov S., Shishniashvili D., Ge B., Scheller F.W., LisdatF., Amperometric biosensor based on a functionalizedgold electrode for the detection of antioxidants, Biosens.Bioelectron., 2002, 17, 191-199.[Crossref]
  • [131] Ge B., Lisdat F., Superoxide sensor based on cytochrome cimmobilized on mixed-thiol SAM with a new calibration method,Anal. Chim. Acta, 2002, 454, 53-64.
  • [132] Cortina-Puig M., Munoz-Berbel X., Rouillon R., Calas-BlanchardC., Marty J.-L., Development of a cytochrome c-based screenprintedbiosensor for the determination of the antioxidantcapacity of orange juices, Bioelectrochemistry, 2009, 76,76-80.[Crossref]
  • [133] Cortina-Puig M., Munoz-Berbel X., Calas-Blanchard C.,Marty J.-L., Electrochemical characterization of a superoxidebiosensor based on the co-immobilization of cytochrome c andXOD on SAM-modified gold electrodes and application to garlicsamples, Talanta, 2009, 79, 289–294.[Crossref]
  • [134] Granero A.M., Fernández H., Agostini E., Zón M.A., Anamperometric biosensor based on peroxidases from Brassicanapus for the determination of the total polyphenolic content inwine and tea samples, Talanta, 2010, 83, 249–255.[Crossref]
  • [135] Kulys J., Bilitewski U., Schmid R.D., The kinetics of simultaneousconversion of hydrogen peroxide and aromatic compounds atperoxidase electrodes, Bioelectrochem. Bioenerg., 1991, 26,277-286.[Crossref]
  • [136] Marko-Varga G., Emneus J., Gorton, L., Ruzgas T., Developementof enzyme-based amperometric sensors for the determinationof phenolic compounds, TRAC-Trend. Anal. Chem., 1995, 14,319-328.[Crossref]
  • [137] Jakubec P., Bancirova M., Halouzka V., Lojek, A., Ciz M., DenevP., Cibicek N., Vacek J., Vostalova J., Ulrichova J., Hrbac J.,Electrochemical sensing of total antioxidant capacity andpolyphenol content in wine samples using amperometry online- coupled with microdialysis, J. Agric. Food Chem., 2012, 60,7836−7843.[Crossref]
  • [138] Arribas A.S., Martínez-Fernández M., Moreno M., Bermejo E.,Zapardiel A., Chicharro M., Analysis of total polyphenols inwines by FIA with highly stable amperometric detection usingcarbon nanotube-modified electrodes, Food Chem., 2013, 136,1183–1192.[Crossref]
  • [139] Rodríguez Cid de León G.I., Gómez Hernández M., Domínguezy Ramírez A.M., Medina López J.R., Alarcón Ángeles G.,Morales Pérez A., Adaptation of DPPH method for antioxidantdetermination, ECS Transactions, 2011, 36, 401-411.
  • [140] Bard A.J., Faulkner L.R., Electrochemical methods. Fundamentalsand applications, 2nd edition., Wiley & Sons Inc., New York,Chicester, Weinheim, 2001.
  • [141] Andrei V., Bunea A.I., Tudorache A., Gaspar S., Vasilescu A.,Simple DPPH∙-based electrochemical assay for the evaluationof the antioxidant capacity: a thorough comparison withspectrophotometric assays and evaluation with real-worldsamples, Electroanalysis, 2014, 26, 2677-2685.[Crossref]
  • [142] Lapidot T., Harel S., Akiri B., Granit R., Kanner J., pH-dependentforms of red wine anthocyanins as antioxidants, J. Agric. FoodChem., 1999, 47, 67–70.[Crossref]
  • [143] Noipa T., Srijaranai S., Tuntulani T., Ngeontae W., New approachfor evaluation of the antioxidant capacity based on scavengingDPPH free radical in micelle systems, Food Res. Int. 2011, 44,798–806.[Crossref]
  • [144] Pisoschi A.M., Danet A.F., Construction and determination of theanalytical characteristics of a potentiometric glucose biosensor,Rev. Chim. (Bucharest), 2004, 55, 843-850.
  • [145] Tessutti L.S., Macedo D.V., Kubota L.T., Alves A.A., Measuringthe antioxidant capacity of blood plasma using potentiometry,Anal. Biochem., 2013, 441, 109–114.
  • [146] Bratovcic A., Odobasic A., Catic S., The advantages of the use ofion-selective potentiometry in relation to UV/VIS spectroscopy,Agric. Conspec. Sci., 2009, 74, 139-142.
  • [147] Goyal R.N., Brajter-Toth A., Dryhurst G., Further insights intothe electrochemical oxidation of uric acid, J. Electroanal. Chem.Iterfacial Electrochem., 1982, 131, 181-202.[Crossref]
  • [148] Brainina Kh.Z., Gerasimova E.L., Varzakova D.P., Balezin S.L.,Portnov I.G., Makutina V.A., Tyrchaninova E.V., Potentiometricmethod for evaluating the oxidant/antioxidant activity ofseminal and follicular fluids and clinical significance of thisparameter for human reproductive function, TOCBMJ, OpenChemical & Biomedical Methods Journal, 2012, 5, 1-7.
  • [149] Brainina Kh.Z., Galperin L.G., Gerasimova E.L., Khodos M.Ya.,Noninvasive potentiometric method of determination of skinoxidant/antioxidant activity, IEEE Sensors J., 2012, 12, 527-532.[Crossref]
  • [150] Brainina Kh.Z., Gerasimova E.L., Kasaikina O.T., Ivanova A.V.,Antioxidant activity evaluation assay based on peroxide radicalsgeneration and potentiometric measurement, Anal. Lett., 2011,44, 1405-1415.[Crossref]
  • [151] Lugonja N.M., Stankovic D.M., Spasic S.D., Roglic G.M.,Manoilovic D.D., Vrvic M.M., Comparative electrochemicaldetermination of total antioxidant activity in infant formula withbreast milk, Food Anal. Method., 2014, 7, 337-344.[Crossref]
  • [152] Harvey D., Modern Analytical Chemistry, McGraw-Hill, New York,1999.
  • [153] Ziyatdinova G.K., Voloshin A.V., Gilmutdinov A.Kh., BudnikovH.C., Ganeev T.S., Application of constant-current coulometryfor estimation of plasma total antioxidant capacity and itsrelationship with transition metal contents, J. Pharm. Biomed.Anal., 2006, 40, 958–963.[Crossref]
  • [154] Ziyatdinova G.K., Budnikov H.C., Pogoreltzev V.I., Ganeev T.S.,The application of coulometry for total antioxidant capacitydetermination of human blood, Talanta, 2006, 68, 800–805.[Crossref]
  • [155] Alonso Á.M., Guillén D.A., Barroso C.G., Development of anelectrochemical method for the determination of antioxidantactivity. Application to grape-derived products, Eur. Food Res.Technol., 2003, 216, 445–448.
  • [156] Zielińska D., Wiczkowski W., Piskuła M.K., Evaluation ofphotochemiluminiscent, spectrophotometric and cyclicvoltammetry methods for the measurement of the antioxidantcapacity: the case of roots separated from buckwheat sprouts,Pol. J. Food Nutr. Sci., 2008, 58, 65-72.
  • [157] Cuartero M., Ortuño J.A., Truchado P., García M.S., Tomás-Barberán F.A., Albero M.I., Voltammetric behaviour and squarewavevoltammetric determination of the potent antioxidant andanticarcinogenic agent ellagic acid in foodstuffs, Food Chem.,2011, 128, 549–554.[Crossref]
  • [158] Chen J., Gorton L., Åkesson B., Electrochemical studies onantioxidants in bovine milk, Anal. Chim. Acta, 2002, 474,137–146.
  • [159] Ceto X., Cespedes F., Pividori M.I., Gutierrez J.M., del ValleM., Resolution of phenolic antioxidant mixtures employinga voltammetric bio-electronic tongue, Analyst, 2012, 137,349-356.[Crossref]
  • [160] Korotkova E.I., Freinbichler W., Linert W., Dorozhko E.V., BukkelM.V., Plotnikov E.V., Voronova O.A., Study of total antioxidantactivity of human serum blood in the pathology of alcoholism,Molecules, 2013, 18, 1811-1818.[Crossref]
  • [161] Teixeira J.G., Barrocas Dias C., Teixeira M.D., Electrochemicalcharacterization and quantification of the strong antioxidantand antitumor agent pomiferin, Electroanalysis, 2009, 21, 2345– 2353.[Crossref]
  • [162] Kahl M., Golden T.D., Electrochemical determination of phenolicacids at a Zn/Al layered double hydroxide film modified glassycarbon electrode, Electroanalysis, 2014, 26, 1664-1670.[Crossref]
  • [163] Wang Z., Yang F., Zeng H., Qin X.J., Luo J.J., Li Y., Xiao D.,Voltammetric determination of TBHQ at a glassy carbonelectrode surface activated by in situ chemical oxidation,Analyst, 2014, 139, 3622-3628.[Crossref]
  • [164] Fatima Barroso M., Delerue-Matos C., Oliveira M.B.P.P.,Electrochemical evaluation of total antioxidant capacity ofbeverages using a purine-biosensor, Food Chem., 2012, 132,1055–1062.[Crossref]
  • [165] Kamel A.H., Moreira F.T.C., Delerue-Matos C., Sales M.G.F.,Electrochemical determination of antioxidant capacities inflavored waters by guanine and adenine biosensors, Biosens.Bioelectron., 2008, 24, 591–599.[Crossref]
  • [166] Kracmarova A., Pohanka M., Electrochemical determination oflow-molecular-weight antioxidants in blood serum, Chem. Listy,2014, 108, 64-69.
  • [167] Silva T.R., Westphal E., Gallardo H., Vieira I.C., Ionic organicfilm sensor for determination of phenolic compounds,Electroanalysis, 2014, 26, 1801-1809.[Crossref]
  • [168] Amatatongchai M., Laosing S., Chailapakul O., Nacapricha D.,Simple flow injection for screening of total antioxidant capacityby amperometric detection of DPPH radical on carbon nanotubemodified-glassy carbon electrode, Talanta, 2012, 97, 267–272.[Crossref]
  • [169] Campanella L., Bonanni A., Bellantoni D., Tomassetti M.,Biosensors for determination of total antioxidant capacityof phytotherapeutic integrators: comparison with otherspectrophotometric, fluorimetric and voltammetric methods, J.Pharmaceut. Biomed., 2004, 35, 303–320.[Crossref]
  • [170] Castaignède V., Durliat H., Comtat M., Amperometric andpotentiometric determination of catechin as model ofpolyphenols in wines, Anal. Lett., 2003, 36, 1707-1720.[Crossref]
  • [171] Zhang D., Chu L., Liu Y., Wang A., Ji B., Wu W., Zhou F., WeiY., Cheng Q., Cai S., Xie L., Jia G., Analysis of the antioxidantcapacities of flavonoids under different spectrophotometricassays using cyclic voltammetry and density functional theory,J. Agric. Food Chem., 2011, 59, 10277–10285.[Crossref]
  • [172] Keyrouz R., Abasq M.L., Le Bourvellec C., Blanc N., Audibert L.,Gall E., Hauchard D., Total phenolic contents, radical scavengingand cyclic voltammetry of seaweeds from Brittany, Food Chem.,2011, 126, 831–836.[Crossref]
  • [173] Pekal A., Drozdz P., Biesaga M., Pyrzynska K., Polyphenoliccontent and comparative antioxidant capacity of flavoured blackteas, Int. J. Food Sci. Nutr., 2012, 63, 742–748.[Crossref]
  • [174] Ziyatdinova G.K., Budnikov H.C., Evaluation of the antioxidantproperties of spices by cyclic voltammetry, J. Anal. Chem., 2014,69, 990-997.[Crossref]
  • [175] Firuzi O., Lacanna A., Petrucci R., Marrosu G., Saso L., Evaluationof the antioxidant activity of flavonoids by ferric reducingantioxidant power assay and cyclic voltammetry, Biochim.Biophys. Acta, 2005, 1721, 174– 184.[Crossref]
  • [176] Amidi S., Mojab F., Moghaddam A.B., Tabib K., Kobarfard F.,A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants, Iran.J. Pharm. Res., 2012, 11, 117-121.
  • [177] Campanella L., Martini E., Tomassetti M., Antioxidant capacityof the algae using a biosensor method, Talanta, 2005, 66,902–911.[Crossref]
  • [178] Malagutti A.R., Zuin V.G., Cavalheiro E.T.G., Mazo L.H.,Determination of rutin in green tea infusions using squarewavevoltammetry with a rigid carbon-polyurethane compositeelectrode, Electroanalysis, 2006, 18, 1028-1034.[Crossref]
  • [179] Novak I., Seruga M., Komorsky-Lovric S., Electrochemicalcharacterization of epigallocatechin gallate using square-wavevoltammetry, Electroanalysis, 2009, 21, 1019-1025.[Crossref]
  • [180] Komorsky-Lovric S., Novak I., Determination of ellagic acid instrawberries, raspberries and blackberries by square-wavevoltammetry, Int. J. Electrochem. Sci., 2011, 6, 4638-4647.
  • [181] Liu J., Su B., Lagger G., Tacchini P., Girault H.H., Antioxidantredox sensors based on DNA modified carbon screen-printedelectrodes, Anal. Chem., 2006, 78, 6879-6884.[Crossref]
  • [182] Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M.,Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R.,Utilizing of square wave voltammetry to detect flavonoids in thepresence of human urine, Sensors, 2007, 7, 2402-2418.[Crossref]
  • [183] Bordonaba J.G., Terry L.A., Electrochemical behaviour ofpolyphenol rich fruit juices using disposable screen-printedcarbon electrodes: Towards a rapid sensor for antioxidantcapacity and individual antioxidants, Talanta, 2012, 90, 38–45.[Crossref]
  • [184] Robledo S.N., Tesio A.Y., Ceballos C.D., Zon M.A., FernandezH., Electrochemical ultra-micro sensors for the determinationof syntetic and natural antioxidants in edible vegetable oils,Sensor. Actuat. B-Chem., 2014, 192, 467-473.[Crossref]
  • [185] Porfirio D.A., de Queiroz Ferreira R., Malagutti A.R., AgostiniValle M.A., Electrochemical study of the increased antioxidantcapacity of flavonoids through complexation with iron(II) ions,Electrochim. Acta, 2014, 141, 33–38.
  • [186] Rodriguez-Sevilla E., Ramirez-Silva, M.T., Romero-RomoM., Ibarra-Escutia P., Palomar-Pardave M., Electrochemicalquantification of the antioxidant capacity of medicinal plantsusing biosensors, Sensors, 2014, 14, 14423-14439.[Crossref]
  • [187] Potkonjaka N.I., Veselinovic D.S., Novacovic M.M., GorjanovicS.Z., Pezo L.L., Suznjevic D.Z., Antioxidant activity of propolisextract from Serbia: a polarographic approach, Food Chem.Toxicol., 2012, 50, 3614-3618.[Crossref]
  • [188] Gorjanovic S.Z., Alvarez-Suarez J.M., Novakovic M.M., PastorF.T., Pezoa L., Battino M., Suznjevic D.Z., Comparativeanalysis of antioxidant activity of honey of different floralsources using recently developed polarographic and variousspectrophotometric assays, J. Food Compos. Anal., 2013, 30,13–18. [Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.