Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Time resolved optical emission spectroscopy in power modulated atmospheric pressure plasma jet

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper, the effects of the power modulation on atmospheric pressure plasma jet, operated in Ar+2%N2 mixture, are studied. Time resolved optical emission spectroscopy is used for the investigation. From line and band intensities, the excitation, vibration and rotation temperatures are calculated. Their evolution during the modulation period exhibits a strong dependence on modulation frequency. For higher modulation frequencies, there is significant discrepancy in rotational temperatures calculated from OH spectra and from N2+ spectra, which indicates that thermalisation time can reach milliseconds.

Opis fizyczny
  • Masaryk University, Department of Physical Electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Masaryk University, Department of Physical Electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Masaryk University, Department of Physical Electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • [1] Kogelschatz U., Dielectric-barrier discharges: Their history, discharge physics and industrial applications, Plasma Chem. Plasma Process., 2003 23, 1-46.[Crossref]
  • [2] Wagner H.E., Brandenburg R., Kozlov K.V., Sonnenfeld A., Michel P., Behnke J.F., The barrier discharge: Basic properties and applications to surface treatment, Vacuum, 2003, 71, 417-436.[Crossref]
  • [3] Shenton M.J., Stevens G.C., Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments, J. Phys. D: Appl. Phys., 2001, 34, 2761.[Crossref]
  • [4] Schafer J., Foest R., Quade A., Ohl A., Weltmann K.-D., Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ), J. Phys. D: Appl. Phys., 2008. 41, 194010.[Crossref]
  • [5] Lee J.K., Kim M.S., Byun J.H., Kim K.T., Kim G.C., Park G.Y., Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching, Jap. Jour. Appl. Phys., 2011, 50, 08JF01.
  • [6] Weltmann K.-D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S., Plasmas processes plasma sources in medicine, Contrib. Plasma Phys., 2012, 52, 644-654.[Crossref]
  • [7] Babayan S.E., Jeong J.Y., Tu V.J., Park J., Selwyn G.S., Hicks R.F., Deposition of silicon dioxide films with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol., 1998, 7, 286-288.
  • [8] Hnilica J., Schafer J., Foest R., Zajickova L., Kudrle V., PECVD of nanostructured SiO2 in a modulated microwave plasma jet at atmospheric pressure, J. Phys. D: Appl. Phys., 2013, 46, 335202.
  • [9] Lieberman M.A., Lichtenberg A.J., Principles of PlasmaDischarges and Materials Processing, 2nd ed., Wiley Interscience, Hoboken, 2005.
  • [10] Behle S., Brockhaus A., Engemann J., Time-resolved investigations of pulsed microwave-excited plasmas, Plasma Sources Sci. Technol., 2000, 9, 57-67.
  • [11] Rousseau A., Teboul E., Sadeghi N., Time resolved gas temperature measurements by laser absorption in a pulsed microwave hydrogen discharge, Plasma Sources Sci. Technol., 2004, 13, 166-176.
  • [12] Britun N., Godfroid T., Konstantinidis S., Snyders R., Time-resolved gas temperature evolution in pulsed Ar–N2 microwave discharge, Appl. Phys. Lett., 2011, 98, 141502.[WoS][Crossref]
  • [13] van der Horst R.M., Verreycken T., van Veldhuizen E.M., Bruggeman P., Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures, J. Phys. D: Appl. Phys., 2012 45, 345201.[Crossref]
  • [14] Potocnakova L., Hnilica J., Kudrle V., Increase of wettability of soft- and hardwoods using microwave plasma, Int. J. Adh. Adh., 2013, 45, 125-131.[WoS]
  • [15] Hnilica J., Potocnakova L., Stupavska M., Kudrle V., Rapid surface treatment of polyamide 12 by microwave plasma jet, Appl. Surf. Sci., 2014, 288, 251-257.[WoS]
  • [16] Hnilica J., Kudrle V., Time-resolved study of amplitude modulation effects in surface-wave atmospheric pressure argon plasma jet, J. Phys. D: Appl. Phys., 2014, 47, 085204.[Crossref][WoS]
  • [17] Moisan M., Beaudry C., Leprince P., A new HF device for the production of long plasma columns at a high electron density, Physics Letters, 1974, 50A, 125-126.[Crossref]
  • [18] Hnilica J., Kudrle V., Potocnakova L., Surface treatment by atmospheric-pressure surfatron Jet, IEEE Trans. Plasma Sci., 2012, 40, 2925-2930.[Crossref][WoS]
  • [19] Griem H.R., Plasma spectroscopy, McGraw-Hill, New York, 1964.
  • [20] Calzada M.D., Moisan M., Gamero A., Sola A., Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure, J. Appl. Phys., 1996, 80, 46-55.[Crossref]
  • [21] Van der Mullen J.A.M., Excitation equilibria in plasmas; a classification, Phys. Rep. 1990, 191, 109-220.
  • [22] Sainz A., Margot J., Garcia M.C., Calzada M.D., Role of dissociative recombination in the excitation kinetics of an argon microwave plasma at atmospheric pressure, J. Appl. Phys., 2005, 97, 113305.[Crossref]
  • [23] van Gessel A.F.H., Carbone E.A.D., Bruggeman P.J., van der Mullen J.J.A.M., Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering, Plasma Sources Sci. Technol., 2012, 21, 015003.
  • [24] Calzada M.D., Garcia M., Luque J.M., Santiago I., Influence of the thermodynamic equilibrium state in the excitation of samples by a plasma at atmospheric pressure, J. Appl. Phys., 2002, 92, 2269-2275.[Crossref]
  • [25] Fridman A., Kennedy L.A., Plasma Physics and Engineering, Taylor & Francis, London, 2004.
  • [26] Popa S.D., Vibrational distributions in a flowing nitrogen glow discharge, J. Phys. D: Appl. Phys. 1996, 29, 411-415.[Crossref]
  • [27] Herzberg G., Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed., Litton Educational Publ., Inc., New York, 1950.
  • [28] Lofthus A., Krupenie P.H., The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, 1997, 6, 113-307.[Crossref]
  • [29] Garcia M.C., Yubero C., Calzada M.D., Martinez-Jimenez M.P., Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure, Appl. Spectrosc., 2005, 59, 519-528.[Crossref]
  • [30] Munoz J., Dimitrijevic M.S., Yubero C., Calzada M.D., Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon–helium microwave plasma at atmospheric pressure, Spectrochim. Acta Part B, 2009, 64, 167-172.[Crossref]
  • [31] Meinel H., Krauss L., Über die besetzung der rotationszustände von oh und C2 in niederdruckplasmen, J. Quant. Spectr. Radiat. Transfer., 1969 9, 443-460.[Crossref]
  • [32] Christova M., Castanos-Martinez E., Calzada M.D., Kabouzi Y., Luque J.M., Moisan M., Electron density and gas temperature from line broadening in an argon surface-wave-sustained discharge at atmospheric pressure, Appl. Spectrosc., 2004, 58(9), 1032-1037.[Crossref]
  • [33] Munoz J., Margot J., Calzada M.D., Experimental study of a helium surface-wave discharge at atmospheric pressure, J. Appl. Phys., 2010, 107, 083304.[Crossref][WoS]
  • [34] Rodero A., Quintero M.C., Sola A., Gamero A., Preliminary spectroscopic experiments with helium microwave induced plasma produced in air by use of a new structure: the axial injection torch, Spectrochim. Acta Part B, 1996, 51, 467-479.[Crossref]
  • [35] Cruden B.A., Rao M.V.V.S., Sharma S.P., Meyyappan M., Neutral gas temperature estimates in an inductively coupled CF4 plasma by fitting diatomic emission spectra, J. Appl. Phys., 2002, 91, 8955-8964.[Crossref]
  • [36] Lombardi G., Benedic F., Mohasseb F., Hassouni K., Gicquel A., Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system, Plasma Sources Sci. Technol., 2004, 13, 375-386.
  • [37] Mermet J., Inductively coupled plasma emission spectrometry, Part II: Applications and Fundamentals, Wiley-Insterscience, New York, 1987
  • [38] Moussounda P.S., Ranson P., Mermet J.M., Spatially resolved spectroscopic diagnostics of argon MIP produced by surface wave propagation (Surfatron), Spectrochim. Acta B, 1985, 40, 641-651.
  • [39] Ricard A., St-Onge L., Malvos H., Gicquel A., Hubert J., Moisan M., Torche a plasma a excitation micro-onde : deux configurations complémentaires, J. Phys. III, 1995, 5, 1269-1285.
  • [40] Gavare Z., Svagere A., Zinge M., Revalde G., Fyodorov V., Determination of gas temperature of high-frequency low-temperature electrodeless plasma using molecular spectra of hydrogen and hydroxyl-radical, J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 1676-1682.[Crossref][WoS]
  • [41] Rincon R., Munoz J., Saez M., Calzada M.D., Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche a Injection Axiale sur Guide d’Ondes, Spectrochim. Acta Part B, 2013, 81, 26-35.[Crossref]
  • [42] Bruggeman P., Schram D.C., Gonzalez M.A., Rego R., Kong M.G., Leys C., Characterization of a direct dc-excited discharge in water by optical emission spectroscopy, Plasma Sources Sci. Technol., 2009, 18, 025017.
  • [43] Bruggeman P., Degroote J., Vierendeels J., Leys C., Plasma characteristics in air and vapor bubbles in water, In: J. Schmidt, M. Simek, S. Pekarek, V. Prukner (Ed.), Proceedings of 28th International Conference on Phenomena in Ionized Gases (15-20 July 2007, Prague, Czech Republic), Institute of Plasma Physics AS CR Prague, 2007, 859-862.
  • [44] Mezei P., Cserfalvi T., Csillag L., The spatial distribution of the temperatures and the emitted spectrum in the electrolyte cathode atmospheric glow discharge, J. Phys. D.: Appl. Phys., 2005, 38, 2804.
  • [45] Mezei P., Cserfalvi T., Electrolyte cathode atmospheric glow discharges for direct solution analysis, Appl. Spectrosc. Rev., 2007, 42, 573-604.[WoS][Crossref]
  • [46] Mezei P., Cserfalvi T., A critical review of published data on the gas temperature and the electron density in the electrolyte cathode atmospheric glow discharges, Sensors, 2012, 12, 6576-6586. [WoS][Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.