Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Spatially resolved spectroscopy of an atmospheric pressure microwave plasma jet used for surface treatment

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this study, the variations of properties of a microwave plasma jet (surfatron) along the discharge axis have been investigated using optical emission spectroscopy. As the argon jet is not enclosed, the spatial distribution of individual species in effluent plasma is the result of rather complicated interplay between energy loss and gradual mixing with the air. Spatial 2D relative intensity profiles of atomic lines and molecular bands at 310 nm, 336 nm, 391 nm and 656 nm are presented in the form of colour maps revealing different positions of maximum emission intensity for 310 nm and 336 nm (in the effluent plasma) and for 391 nm and 656 nm (inside the discharge tube). The plasma jet was used for surface treatment of heat resistant samples (stainless steel, aluminium, silicon wafer) and the effectiveness of the plasma treatment was evaluated by measuring the sessile drop contact angle, with water and glycerol as testing liquids. The optimal position for plasma treatment (close to the tube nozzle) combined with longer treatment time (10 s) lead to hydrophilic properties of samples with contact angles as low as 10°.

Opis fizyczny
  • Masaryk University, Department of physical electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Masaryk University, Department of physical electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Masaryk University, Department of physical electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • ---
  • [1] Bardos L., Barankova H., Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films, 2010, 518, 6705-6713
  • [2] Tendero C., Tristant P., Desmaison J., Leprince P., Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B, 2006, 61, 2-30
  • [3] Zenkiewicz M., Methods for the calculation of surface free energy of solids, J. Achievements Mater. Manuf. Eng., 2007, 24, 137
  • [4] Upadhyay D.J., Nai-Yi Cui, Anderson C.A., Brown N.M.D.,A comparative study of the surface activation of polyamides using an air dielectric barrier discharge, Colloids Surf. A: Physicochem. Eng. Asp., 2004, 248, 47-56
  • [5] Novak I., Steviar M., Chodak I., Surface energy and adhesive properties of polyamide 12 modified by barrier and radio-frequency discharge plasma, Monatshefte für Chemie, 2006, 137, 943-952
  • [6] Topala I., Dumitrascu N., Dynamics of the wetting process on dielectric barrier discharge (DBD) treated wood surfaces, J. Adh. Sci. Technol., 2007, 21, 1089-1096[WoS]
  • [7] Prysiazhnyi V., Vasina P., Panyala N.R., Havel J., Cernak M., Air DCSBD plasma treatment of Al surface at atmospheric pressure, Surf. Coat. Technol., 2012, 206, 3011-3016[WoS]
  • [8] Prysiazhnyi V., Cernak M., Air plasma treatment of copper sheets using Diffuse Coplanar Surface Barrier Discharge, Thin Solid Films, 2012, 520, 6561-6565
  • [9] Prysiazhnyi V., Svoboda T., Dvorak M., Klima M., Aluminum surface treatment by the RF plasma pencil, Surf. Coat. Technol., 2012, 206, 4140-4145[WoS]
  • [10] Uhm H.S., Hong Y.C., Shin D.H., A microwave plasma torch and its applications, Plasma Sources Sci. Technol., 2006, 15, S26-S34
  • [11] Moisan M., Zakrzewski Z., Pantel R., The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns, J. Phys. D: Appl. Phys., 1979, 12, 219-237[Crossref]
  • [12] Hnilica J., Kudrle V., Potocnakova L., Surface treatment by atmospheric-pressure surfatron jet, IEEE Trans. Plasma Sci., 2012, 40, 2925-2930[WoS]
  • [13] Hnilica J., Potocnakova L., Stupavska M., Kudrle V., Rapid surface treatment of polyamide 12 by microwave plasma jet, Appl. Surf. Sci., 2014, 288, 251-257[WoS]
  • [14] Lu X., Laroussi M., Puech V., On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol., 2012, 21, 034005
  • [15] Razzak M.A., Takamura S., Saito S., Talukder M.R., Estimation of plasma parameters for microwave-sustained Ar/He plasma jets at atmospheric pressure, Contrib. Plasma Phys., 2010, 50, 871-877[WoS]
  • [16] Ferreira C.M., Theory of a plasma column sustained by a surface wave, J. Phys. D: Appl. Phys., 1981, 14, 1811-1830[Crossref]
  • [17] Moisan M., Shivarova A., Trivelpiece A.W., Experimental investigations of the propagation of surface waves along a plasma column, Plasma Phys., 1982, 24, 1331-1400[Crossref]
  • [18] Moisan M., Ferreira C.M., Hajlaoui Y., Henry D., Hubert J., Pantel R., Ricard A., Zakrzewski Z., Properties and applications of surface wave produced plasmas, Revue Phys. Appl., 1982, 17, 707-727[Crossref]
  • [19] Moisan M., Zakrzewski Z., Plasma sources based on the propagation of electromagnetic surface waves, J. Phys. D: Appl. Phys., 1991, 24, 1025-1048[Crossref]
  • [20] Yildirim Erbil H., Surface chemistry of solid and liquid interfaces, Blackwell Publishing, Oxford, 2006
  • [21] Buršíková V., S?tahel P., Navratil Z., Bursik J., Janca J., Surface energy evaluation of plasma treated materials by contact angle measurement, Masaryk University, Brno, 2004
  • [22] Garcia M.C., Yubero C., Calzada M.D., Martinez-Jimenez M.P., Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure,Appl. Spectrosc., 2005, 59, 519-528
  • [23] Griem H.R., Plasma spectroscopy, McGraw-Hill, New York, 1964
  • [24] Munoz J., Dimitrijevic M.S., Yubero C., Calzada M.D., Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon–helium microwave plasma at atmospheric pressure, Spectrochim. Acta Part B, 2009, 64, 167-172
  • [25] Calzada M.D., Moisan M., Gamero A., Sola A., Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure, J. Appl. Phys., 1996, 80, 46-55
  • [26] Gavare Z., Svagere A., Zinge M., Revalde G., Fyodorov V., Determination of gas temperature of high-frequency low-temperature electrodeless plasma using molecular spectra of hydrogen and hydroxyl-radical, J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 1676-1682
  • [27] Engelhard C., Chan G.C.Y., Gamez G., Buscher W., Hieftje G.M., Plasma diagnostic on a low-flow plasma for inductively coupled plasma optical emission spectrometry, Spectrochim. Acta Part B, 2008, 63, 619-629
  • [28]
  • [28] Potocnakova L., Hnilica J., Kudrle V., Increase of wettability of soft- and hardwoods using microwave plasma, Int. J. Adh. Adh., 2013, 45, 125-131 [WoS]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.