Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Modification of PET surface properties using extremely non-equilibrium oxygen plasma

Treść / Zawartość
Warianty tytułu
Języki publikacji
Polyethylene terephthalate (PET) foils have been exposed to oxygen plasma and its afterglow in order to reveal compositional and structural modifications of the surface layer. Oxygen plasma was created by electrode-less RF discharge in a glass chamber so the O-atom density was close to 1022 m-3 although the density of charged particles was only about 1 × 1016 m-3. Long-living reactive particles created in plasma were leaked into the afterglow chamber using a two-stage rotary pump of pumping speed 4.4 × 10-3 m3 s-1. The density of O-atoms in the afterglow as measured with a catalytic probe was 3 × 1021 m-3, while the density of reactive oxygen molecules was estimated theoretically. The functionalization was accomplished even after a brief exposure to either plasma or afterglow since all samples were saturated with oxygen-rich functional groups as revealed by XPS. The water contact angle measurements, however, showed that only plasma treatment allowed for super-hydrophilicity, explained by rich surface morphology as detected by AFM. The differences in morphological properties between plasma and afterglow treated samples were explained by different interaction mechanisms between low and high energy particles impinging the polymer surface.
Słowa kluczowe

Opis fizyczny
  • Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
  • Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
  • Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
  • [1] Cheng T.S., Lin H.T., Chuang M.J., Surface fluorination of polyethylene terephthalate films with RF plasma, Mater. Lett., 2004, 58, 650–653.
  • [2] Vesel A., Hydrophobization of polymer polystyrene in flurine plasma, Mater. Tehnol., 2011, 45, 217-220.
  • [3] Wang C., Lai P.-C., Syu S.H., Leu J., Effects of CF4 plasma treatment on the moisture uptake, diffusion, and WVTR of poly(ethylene terephthalate) flexible films, Surf. Coat. Tech. 2011, 206, 318-324.[WoS]
  • [4] Lehocky M., Mracek A., Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment, Czech. J. Phys., 2006, 56, 1277-1282.
  • [5] Vesel A., XPS study of surface modification of different polymer materials by oxygen plasma treatment, Inorm. Midem., 2008, 38, 257-265.
  • [6] Vrlinic T., Vesel A., Cvelbar U., Krajnc M., Mozetic M., Rapid surface functionalization of poly(ethersulfone) foils using a highly reactive oxygen-plasma treatment, Surf. Inter. Anal., 2007, 39, 476-481.[Crossref]
  • [7] Singh, N.L. , Pelagade, S.M., Rane, R.S., Mukherjee, S., Deshpande, .P., Ganeshan, V., Shripathi, T., Influence of argon plasma treatment on polyethersulphone surface, Pramana – J. of Phys 2013, 80, 133-141.[WoS]
  • [8] Cvelbar U., Mozetic M., Junkar I., Vesel A., Kovac J., Drenik A., Vrlinic T., Hauptman N., Klanjsek-Gunde M., Markoli B., Krstulovic N., Milosevic S., Gaboriau F., Belmonte T., Oxygen plasma functionalization of poly(p-phenilene sulphide, Appl. Surf. Sci., 2007, 253, 8669-8673.[WoS]
  • [9] Vesel A., Modification of polystyrene with highly reactive cold oxygen plasma, Surf. Coat. Technol. 2010, 205, 490-497.[WoS]
  • [10] Wang M.J., Chang Y.I., Poncin-Epaillard F., Effecets of the addition of hydrogen in the nitrogen cold plasma: The surface modification of polystyrene, Langmuir, 2003, 19, 8325-8330.[Crossref]
  • [11] Sowe M., Novak I., Vesel A., Junkar I., Lehocky M., Saha P., Chodak I., Analaysis and characterization of printed plasma-treated polyvinyl chloride, Int. J. Polym. Anal. Ch., 2009, 14, 641-651.[Crossref]
  • [12] Asadinezhad A., Novak I., Lehocky M., Bilek F., Vesel A., Junkar I., P. Saha, A. Popelka,Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment, Molecules. 2010, 15, 2845-2856.[Crossref][WoS]
  • [13] Asadinezhad A., Novak I., Lehocky M., Sedlarik V., Vesel A., Junkar I., Saha P., Chodak I., A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating, Plasma Processes Poly. 2010, 7, 504-514.
  • [14] Vesel A., Elersic K., Junkar I., Malic B., Modification of polyethylene terapthalat polymer using an oxygen plasma treatment, Mater. Tehnol., 2009, 43, 323-326.
  • [15] Tomcik B., Popovic D. R., Jovanovic I. V, Petrovic Z. L. J., J., Modification of wettability of polymer surface by microwave plasmas, Polym. Res. 2001, 8, 259-266.
  • [16] Vesel A., Mozetic M., Hladnik A., Dolenc J., Zule J., Milosevic S., Krstulovic N., Klanjsek-Gunde M., Hauptman N., Modification of ink-jet paper by oxygen plasma treatment, J. Phys. D: Appl. Phys., 2007, 40, 3689-3696.[WoS][Crossref]
  • [17] Gorjanc M., Bukosek V., Gorensek M., Vesel A., CF4 plasma and silver functionalized cotton, Tex. Res. J., 2010, 80, 2204-2231.
  • [18] Puač N., Petrovic Z. Lj., Radetić M., Djordjevic A., Pressure RF Capacitively Coupled Plasma Reactor for Modification of Seeds, Polymers and Textile Fabrics, Mat. Sci. Forum., 2005, 494, 291-296.
  • [19] P. Jovancic P., Jocic D., Radetic M., Topalovic T., Petrovic Z. L., The Influence of Surface Modification on Related Functional Properties of Wool and Hemp, Curr. Res. Adv. Mater. Process., 2005, 494, 283-290.
  • [20] Donegan M., Milosavljevic V., Dowling D.P., Activation of PET using RF atmospheric plasma system, Plasma Chem Plasma P. 2013, 33, 941-957.[WoS][Crossref]
  • [21] Hemola T., Matousek J., Hergelova B., Kormunda M., Wu L.Y.L, Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma, 2012, Cernak Poly. Degrad. Stabil., 97, 2249-2254.[WoS]
  • [22] Kontziampasis D., Constantoudis V., Gogolides E., Plasma directed organization of nanodots on polymers: Effects of polymer type and etching time on morphology and order Plasma. Process. Poly., 2012, 9, 866-872.[Crossref]
  • [23] Gotoh K., Kobayashi Y., Yasukawa A., Ishigami Y., Surface modification of PET films by atmospheric pressure plasma exposure with three reactive gas sources Colloid. Poly. Sci. 2012, 290, 1005-1014.
  • [24] Wohlfart E., Fernandez-Blazquez J.P., Arzt E., Campo A., Nanofibrillar patterns on PET: The influence of plasma parameters in surface morphology, Plasma. Process. Poly., 2011, 8, 876-884.[Crossref]
  • [25] Fernandez-Blazquez J.P., Serrano C., Fuentes C., Campo A., Polymer Films Controlled by Mechanical Orientation, ACS Macro Letters., 2012, 1, 627-631.
  • [26] Cho K., Takenaka K., Setsuhara Y., Shiratani M., Sekine M., Hori M., Effects of Irradiation with Ions and Photons in Ultraviolet--Vacuum Ultraviolet Regions on Nano-Surface Properties of Polymers Exposed to Plasmas, Jpn. J. Appl. Phys. 2012, 51, 8-12.[WoS]
  • [27] Wang C.Q., Zhang G.X., Wang X.X., He X.N., Surface modification of poly(ethylene terephthalate) (PET) by magnet enhanced dielectric barrier discharge air plasma, Surf. Coat. Tech. 2011, 205, 4993-4999.[WoS]
  • [28] Shin K., Park R.K., Yu L., Park C.Y., Lee Y.S., Lim Y.S., Han J.H., Improvement of single-walled carbon nanotube transparent conductive films using substrate pre-treatment, Synthetic. Met. 2011, 161, 1596.
  • [29] K. Fricke, H. Steffen, T. von Woedtke, K. Schröder, K.-D. Weltmann, High Rate Etching of Polymers by Means of an Atmospheric Pressure Plasma Jet, Plasma Process. Polym., 2011, 8, 51-58.[Crossref]
  • [30] Novak, I., Popelka, A., Valentin, M., Chodak I., Spirkova M., Toth A., Kleinova A., Sedliacik J., Lehocky M.,Maronek M., Surface Behavior of Polyamide 6 Modified by Barrier Plasma in Oxygen and Nitrogen, 2014, 19, 31-38.[WoS]
  • [31] Kregar Z., Biscan M., Milosevic S., Vesel A., Inductively coupled RF oxygen plasma studied by spatially resolved optical emission spectroscopy, IEEE Trans. Plasma Sci., 2011, 39, 1239-1369.[Crossref][WoS]
  • [32] Krstulovic N., Labazan I., Milosevic S., Cvelbar U., Vesel A., Mozetic M., Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil, J. Phys. D: Appl. Phys., 2006, 39, 3799-3804.[Crossref]
  • [33] Junkar I., Cvelbar U., Vesel A., Hauptman N., Mozetic M., The role of crystallinity on polymer interaction with oxygen plasma, Plasma. Process. Poly., 2009, 6, 667-675.[Crossref]
  • [34] Grosse-Kreul S., Corbella C., Keudell A., Surface modification of polypropylene (PP) by argon ions and UV photons, Plasma. Process. Poly., 2013, 10, 1110-1119.[Crossref]
  • [35] H. Bahre, K. Bahroun, H. Behm, S. Steves, P. Awakowicz, M. Boke, C. Hopmann, J.Winter, Surface pre-treatment for barrier coatings on polyethylene terephthalate, J. Phys. Appl. Phys., 2013, 46, 8-12.[WoS]
  • [36] A. Vesel, M. Kolar, A. Doliska, K. Stana-Kleinschek, M. Mozetic, Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma, Surf. Inter. Anal. 2012, 44, 1565-1571.[Crossref]
  • [37] D.P Dowling, J. Tynan, P. Ward, A.M. Hynes, J. Cullen, G. Byrne, Atmospheric pressure plasma treatment of amorphous polyethylene terephthalate for enhanced heatsealing properties, Inter. J. Adhes. Adhes., 2012, 35, 1-8.
  • [38] K. Kutasi, R. Zaplotnik, G. Primc, M. Mozetic, Controlling the oxygen species density distributions in the flowing discharges, J. Phys. D. Appl. Phys., 2014, 47, 25203-25210.[Crossref]
  • [39] A. Doliska, A. Vesel, M. Kolar, K. Stana-Kleinschek, M. Mozetic, Interaction between model poly(ethylene terephthalate) thin films and weakly ionised oxygen plasma, Surf. Inter. Anal., 2012, 44, 56-61. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.