Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 13 | 1 |
Tytuł artykułu

Low pressure RF plasma modification of the surface of three different nano-carbon materials

Treść / Zawartość
Warianty tytułu
Języki publikacji
Well-ordered nano-carbon materials, like multi-wall carbon nanotubes, graphene oxide, graphene due to their unique physical and chemical properties, are candidates for promising applications. In this work thin multilayered graphene, single layer graphene oxide layers and highly oriented pyrolytic graphite (HOPG) surface were treated by RF activated N2 gas plasma at nominally room temperature. Negative bias in the 0–200 V range and treatment time of 10 min was applied. Surface chemical alterations were followed by X-ray photoelectron spectroscopy (XPS). The applied treatments resulted in a significant build-up of nitrogen in the surface of these nano-carbon materials. The amount of nitrogen varied between 4 and 10 atomic %, depending on type of carbon and on biasing conditions. Evaluating the high-resolution N1s XP spectral region, typically three different chemical bonding states of the nitrogen were delineated. Peak component at 398.3 eV is assigned to C=N–C type, at 399.7 eV to sp2 N in melamine-type ring structure and at 400.9 eV to N substituting carbon in a graphite-like environment. Identical chemical bonding of the nitrogen was detected on the surface of HOPG treated in the same way for comparison.
Słowa kluczowe

Opis fizyczny
  • Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, PO Box 286, Hungary
  • Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, PO Box 286, Hungary
  • Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49, Hungary
  • Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
  • Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, PO Box 286, Hungary
  • [1] Soldano C., Mahmood A., Dujardin E., Production, properties and potential of graphene, Carbon, 2010, 48, 2127–2150.[WoS][Crossref]
  • [2] Hu Y.H., Wang H., Hu B., Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy, ChemSusChem, 2010, 3, 782–796.[Crossref][WoS]
  • [3] Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H., Chemical functionalization of graphene and its applications, Progress in Materials Science, 2012, 57, 1061–1105.
  • [4] Feng L., Wu L., Qu X., New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide, Advanced Materials, 2013, 25, 168–186.[WoS][Crossref]
  • [5] Tóth A., Törőcsik A., Tombácz E., Oláh E., Heggen M., Li C., et al., Interaction of phenol and dopamine with commercial MWCNTs, J. Coll. Interface Sci., 2011, 364, 469–475.[Crossref]
  • [6] Whitby R.L.D., Gun’ko V.M., Korobeinyk A., Busquets R., Cundy A.B., László K., et al., Driving Forces of Conformational Changes in Single-Layer Graphene Oxide, ACS Nano, 2012, 6, 3967–3973.[Crossref]
  • [7] Kuila T., Bhadra S., Yao D.H., Kim N.H., Bose S., Lee J.H., Recent advances in graphene based polymer composites, Progress in Polymer Science, 2010, 35, 1350–1375.
  • [8] Bertóti I., Mohai I., Mohai M., Szépvölgyi J., Surface modification of multi-wall carbon nanotubes by nitrogen attachment, Diamond Relat. Mater., 2011, 20, 965–968, DOI: 10.1016/j.diamond.2011.05.011[Crossref][WoS]
  • [9] Kun P., Weber F., Balázsi C., Preparation and examination of multilayer graphene nanosheets by exfoliation of graphite in high efficient attritor mill, Cent. Eur. J. Chem., 2011, 9, 47–51, DOI: 10.2478/s11532-010-0137-5.[WoS][Crossref]
  • [10] Mohai M., XPS MultiQuant: Multimodel XPS Quantification Software, Surf. Interface Anal., 2004, 36, 828–832, DOI: 10.1002/sia.1775.[Crossref]
  • [11] M. Mohai M., Bertóti I., Calculation of Overlayer Thickness on Curved Surfaces Based on XPS Intensities, Surf. Interface Anal., 2004, 36, 805–808, DOI: 10.1002/sia.1769.[Crossref]
  • [12] Evans S., Pritchard R.G., Thomas J.M., Relative Differential Subshell Photoionization Cross-sections (Mg Kα) from Lithium to Uranium, J. Electron Spectrosc. Relat. Phenom., 1978, 14, 341–358.[Crossref]
  • [13] Reilman R.F., Msezane A., Manson S.T., Relative Intensities in Photoelectron Spectroscopy of Atoms and Molecules, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 389–394.[Crossref]
  • [14] Lakshminarayanan P.V., Toghiani H., Pittman Jr. C.U., Nitric acid oxidation of vapor grown carbon nanofibers, Carbon, 2004, 42, 2433–2442.[Crossref]
  • [15] Zhou J-H., Sui Z-J., Zhu J., Li P., D. Chen, Dai Y.-C., et al., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR, Carbon, 2007, 45, 785–796.[Crossref][WoS]
  • [16] Baker A., Hammer P., A Study of the Chemical Bonding and Microstructure of Ion Beam-deposited CNx Films Including an XPS C 1s Peak Simulation, Surf. Interface Anal., 1997, 25, 629–642.[Crossref]
  • [17] Souto S., Pickholz M., dos Santos M.C., Alvarez F., Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy, Phys. Rev. B, 1998, 57, 2536–2540, DOI: 10.1103/PhysRevB.57.2536.[Crossref]
  • [18] Ujvári T., Kolitsch A., Tóth A., Mohai M., Bertóti I., XPS characterisation of the composition and bonding states of elements in CNx layers prepared by ion beam assisted deposition, Diamond Relat. Mater., 2002, 11, 1149–1152.
  • [19] Marton D., Boyd K.J., Rabalais J.W., Synthesis of carbon nitride, Int. J. Modern Physics B, 1995, 9, 3527–3558, DOI: 10.1142/S0217979295001385.[Crossref]
  • [20] Bertóti I., Characterization of nitride coatings by XPS, Surf. Coat. Technol., 2002, 151–152, 194–203.
  • [21] Rodil S.E., Muhl S., Bonding in amorphous carbon nitride, Diamond Relat. Mater., 2004, 13, 1521–1531, DOI: 10.1016/j.diamond.2003.11.008.[Crossref]
  • [22] Ronning C., Feldermann H., Merk R., Hofsass H., H.P. Reinke, J.U. Thiele, Carbon nitride deposited using energetic species: A review on XPS studies, Phys.Rev. B, 1998, 58, 2207–2215, DOI: 10.1103/PhysRevB.58.2207.[Crossref]
  • [23] Lin Y-C., Lin Ch-Y., Chiu P-W., Controllable graphene N-doping with ammonia plasma, Appl. Phys. Lett., 2010, 96, 133110–133110-3, DOI: 10.1063/1.3368697.[WoS][Crossref]
  • [24] Koch R.J., Weser M., Zhao W., Viñes F., Gotterbarm, K., Kozlov S.M., et al., Growth and electronic structure of nitrogen-doped graphene on Ni(111), Phys. Rev. B, 2012, 86, 075401, DOI: 10.1103/PhysRevB.86.075401.[Crossref]
  • [25] Zhao W., Höfert O., Gotterbarm K., Zhu J.F., Papp C., Steinrück H.-P., J. Phys. Chem. C, 2012, 116, 5062–5066, DOI: 10.1021/jp209927m.[Crossref]
  • [26] Bertóti I., Tóth A., Mohai M., Ujvári T., Comparison of Composition and Bonding States of Constituents in CNx Layers Prepared by DC Plasma and Magnetron Sputtering, Surf. Interface Anal., 2000, 30, 538–543.[Crossref]
  • [27] Zheng W.T., Xing K.Z., Hellgren N., Lögdlund M., Johansson Å., Gelivs U., et al., Nitrogen 1s electron binding energy assignment in carbon nitride thin films with different structures, J. Electron Spectrosc. Relat. Phenom., 1997, 87, 45–49, DOI: 10.1016/S0368-2048(97)00083-2.[Crossref]
  • [28] Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A., X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films, Diamond Relat. Mater., 2000, 9, 1904–1907, DOI: 10.1016/S0925-9635(00)00345-9. [Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.