PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 13 | 1 |
Tytuł artykułu

Alkali roasting of bomar ilmenite: rare earths recovery and physico-chemical changes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the alkali roasting of ilmenite (FeTiO3) is presented as a process route for integrated beneficiation of the mineral for rutile-rich phase and rare earth oxides; the latter is released as a consequence of physical changes in the ilmenite matrix, during the water leaching after roasting. The oxidative alkali roasting transforms ilmenite mineral into water-insoluble alkali titanate and water-soluble ferrite. After roasting the insoluble alkali titanate is separated from rare-earth oxide mixture in colloidal form and water-soluble ferrite. Further leaching of alkali titanate is carried out with oxalic (0.3M) and ascorbic (0.01M) acid solution which removes the remaining Fe2+ ions into the leachate and allows precipitation of high-purity synthetic rutile containing more than 95% TiO2. Iron is removed as iron oxalate. The physico-chemical changes occurred during the roasting and leaching processes are reported by comparing the role of alkali on the roasting process and product morphologies formed.
Wydawca
Czasopismo
Rocznik
Tom
13
Numer
1
Opis fizyczny
Daty
otrzymano
2014-02-07
zaakceptowano
2014-04-06
online
2014-11-01
Twórcy
  • Institute for Materials Research, Houldsworth Building, University of Leeds, Leeds LS2 9JT, UK
  • Institute of Electrochemistry, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany
autor
  • Institute for Materials Research, Houldsworth Building, University of Leeds, Leeds LS2 9JT, UK
Bibliografia
  • [1] Habashi F., Handbook of Extractive Metallurgy, Wiley-VCH, New York, 1997, Vol.3
  • [2] Chen X., Mao S.S., Chem. Rev., 2007, 107
  • [3] Brown T.J. et al., World mineral production, British Geological Survey, Nottingham, 2013
  • [4] Kingery W.D. et al., Introduction to ceramics, 2nd ed., Wiley-Interscience, New York, 1981
  • [5] Lahiri A., Jha A., Metall. Mater. Trans. B, 2007, 38
  • [6] Foley E. et al., J. Solid State Chem., 1970, 1
  • [7] Jha A. et al., Metall. Mater. Trans. C, 2008, 117
  • [8] Wang Y., Yuan Z., Int. J. Miner. Process, 2006, 81
  • [9] Wang Y. et al., Trans. Nonferrous Met. Soc. China, 2008, 18
  • [10] Liu Y. et al., Int. J. Miner. Process, 2006, 81
  • [11] Amer A.M, Hydrometallurgy, 2002, 67
  • [12] Nayl A.A., Aly H.F., Hydrometallurgy, 2009, 97
  • [13] Mahmoud M.H.H. et al., Hydrometallurgy, 2004, 73
  • [14] Zhang S., Nicol M.J., Hydrometallurgy, 2010, 103
  • [15] Roine A., Outokumpu HSC Chemistry for Windows User´s guide, version 5.1, 2002
  • [16] Sanchez-Segado S., Jha A., TMS Annual Meeting, 2013
  • [17] Tathavadkar V.D., Antony M.P., Jha A., Metall. Mater. Trans. B, 2005, 36
  • [18] Poling B.E. et al., The properties of gases and liquids, 5th ed., Mc Graw Hill, New York, 2001
  • [19] Barriga C. et al., J. Solid State Chem., 1988, 77
  • [20] Lahiri A., Jha A., Hydrometallurgy, 2009, 95
  • [21] Sutter D. et al., Langmuir, 1991, 7(4)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_chem-2015-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.