Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 1 | 1 |
Tytuł artykułu

Bioreduction of fluoroacetophenone derivatives by endophytic fungi isolated from the marine red alga Bostrychia radicans

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Four endophytic fungi isolated from the marine red alga Bostrychia radicans identified as Botryosphaeria sp. CBMAI 1197, Eutypella sp. CBMAI 1196, Hidropisphaera sp. CBMAI 1194 and Xylaria sp. CBMAI 1195 catalyzed the asymmetric bioreduction of fluoroacetophenone derivatives 1-3 to the corresponding fluorophenylalcohols 1a-3a. In the reduction reactions of 2,2,2-trifluoro-1-phenylethanone 1, all the marine fungi produced exclusively the (S)-2,2,2-trifluoro- 1-phenylethanol 1a with > 99% ee. The fungus Botryosphaeria sp. CBMAI 1197 exhibited the best enzymatic potential, leading to the highest conversion values (up to > 99%). The biocatalyst Botryosphaeria sp. CBMAI 1197 also presented active enzymes in reactions with the substrates 1-(2-(trifluoromethyl)phenyl) ethanone (2) and 1-(2,4,5-trifluorophenyl)ethanone (3), producing the respective chiral alcohols S-2a and R-3a with > 99% ee. Additionally, the fungus Hidropisphaera sp. CBMAI 1194 yielded 100% of conversion of the ketone 3 to the corresponding S-alcohol 3a, with 53% ee.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2015-11-11
zaakceptowano
2015-12-14
online
2016-01-21
Twórcy
  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa
    Angelina, 13563-120, São Carlos, São Paulo, Brazil
  • Laboratório de
    Química Orgânica do Ambiente Marinho, Faculdade de Ciências
    Farmacêuticas de Ribeirão Preto, Universidade de São Paulo,Via do
    Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
  • Laboratório de
    Química Orgânica do Ambiente Marinho, Faculdade de Ciências
    Farmacêuticas de Ribeirão Preto, Universidade de São Paulo,Via do
    Café s/n, 14040-903, Ribeirão Preto, São Paulo, Brazil
  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa
    Angelina, 13563-120, São Carlos, São Paulo, Brazil
Bibliografia
  • [1] Gawley R. E. , Aubé J. Principles of Asymmetric Synthesis. 2012,2nd Ed., 2012.
  • [2] Jaeger K.E., Reetz M. Directed evolution of enantioselectiveenzymes for organic chemistry. Curr. Opin. Chem. Biol., 2000,4, 68-73.[Crossref]
  • [3] Walker M., Chang M.C.Y. Natural and engineered biosynthesisof fluorinated natural products. Chem. Soc. Rev., 2014,43,6527-6536.[Crossref][WoS]
  • [4] Xiu-de Hua, Z.; Hai-yan, S.; Liu, S.; Tian, M.; Wang, M.Enantioselective bioactivity, acute toxicity and dissipation invegetables of the chiral triazole fungicide flutriafol. J. Hazard.Mater., 2015, 284, 65-72.[WoS]
  • [5] O’hagan, D. Understanding organofluorine chemistry: Anintroduction to the C–F bond. Chem. Soc. Rev., 2008, 37,308-319.
  • [6] O´Hagan, D. Fluorine in health care: Organofluorine containingblockbuster drugs. J. Fluorine Chem., 2010, 131, 1071-1081.
  • [7] Hoff, B.H., Sundby, E., Preparation of pharmaceutical importantfluorinated 1-arylethanols using isolated enzymes. Bioorg.Chem., 2013, 51, 31-47.[WoS]
  • [8] Peter Jeschke. The unique role of fluorine in the design ofactive ingredients for modern crop protection. ChemBioChem.,2004, 5, 570-589.[Crossref]
  • [9] Lam, Y, H.; Steven, J.S.; Veronique, G. Recent progress inthe use of fluoroorganic compounds in pericyclic reactions.Tetrahedron., 2009, 65, 9905-9933.[Crossref]
  • [10] Nie, J., Hong-Chao, G., Cahard, D., Jum-ham, M. Asymmetricconstruction of stereogenic carbon centers featuring a trifluoromethylgroup from prochiral trifluoromethylated substrates.Chem. Rev., 2011, 32, 455-529.[WoS][Crossref]
  • [11]. Bonnet-Delpon, D. Le fluor : Un élément essentiel en chimiemedicinal. Ann. Pharma. Fr, 2008, 66, 56-59.[Crossref]
  • [12] Ni, Y.; Xu, J. Biocatalytic ketone reduction: A green and efficientaccess to enantiopure alcohols. Biotech. Adv., 2012, 30,1279-1288.
  • [13] Ferreira I.M., Vasconcellos S.P., Cruz J.B.C., Comasseto J.V.,Porto A.L.M., Rocha L.C. Hydrogenattion of bis-α,β-unsaturatedenones mediated by filamentous fungi. J. Biocatal. Agric.Biotechnol., 2015, 4, 144-149.
  • [14] Matsuda, T., Yamanaka, R.K., Nakamura, K. Recent progressin biocatalysis for asymmetric oxidation and reduction.Tetrahedron-Asymmetr., 2009, 20, 513-557.[WoS][Crossref]
  • [15] Nakamura, K., Yamanaka, R., Matsuda, T., Harada, T. Recentdevelopments in asymmetric reduction of ketones withbiocatalysts. Tetrahedron-Asymmetr., 2003, 14, 2659-2681.[Crossref]
  • [16] Wang, L.J., Li, C.X., Ni, Y., Liu, X., Xu, J.H. Highly efficientsynthesis of chiral alcohols with a novel NADH-dependentreductase from Streptomyces coelicolor. Biores. Technol., 2001,102, 7023-7028.
  • [17] Carballeira, J.D., Quezada, M.A., Hoyos, P., Simeó, Y., Hernaiz,M.J., Hernaiz, M.J. Microbial cells as catalysts for stereoselectiveredox reactions. Biotechnol. Adv., 2009, 27, 686-714.[WoS][Crossref]
  • [18] Goldberg, K., Schroer, K., Lutz, S., Liase, A. Biocatalyticketonereduction- A powerful tool for the production of chiralalcohols-part II: whole-cell reductions. Appl. Microbiol.Biotechnol., 2007, 76, 249-255.[WoS]
  • [19] Faber, K. Biotransformations in organic chemistry. 5 th. ed.Berlin: Springer-Verlag, 2004.
  • [20] Grunwald, P. 2009. Biocatalysis: Biochemical Fundamental andApplications. London: Imperial College, 2009.
  • [21] Cao, C., Fukae, T., Yamamoto, T., Kanamaru, S., Matsuda,T. Purification and characterization of fluorinated ketonereductase from Geotrichum candidum NBRC 5767. BiochemicalEng. J., 2013, 76, 13-16.
  • [22] Trincone, A. Potential biocatalysts originating from seaenvironments. J. Mol. Catal. B-Enzym., 2010, 66, 241-256.[Crossref]
  • [23] Oliveira, A. L. L., da Silva, D. B., Lopes, N. P., Debonsi, H. M.Chemical constituents from red algae Bostrychia radicans(Rhodomelaceae): new amides and phenolic compounds.Quim. Nova, 2012, 35, 2186-2188.[WoS][Crossref]
  • [24] Karsten, U.L.F., Gunter, O. K. The effect of salinity on growth,photosynthesis and respiration in the estuarine red algaBostrychia radicans. Helgolander Meresun, 1989, 43, 61-66.
  • [25] Mouad, A.M., Martins, M.P., Debonsi, H.M., de Oliveira, A.L.L.,de Felicio, R., Yokoya, N.S. Bioreduction of acetophenonederivatives by red marine algae Bostrychia radicans, Bostrychiatenella, and marine bacteria associated. Helv. Chim. Acta.,2011, 94, 1506-1514.[WoS][Crossref]
  • [26] Mouad, A.M., Martins, M.P., Romminger, S., Seleghim, M.H.R.,Oliveira, A.L.L., Debonsi, H.M. Bioconversion of acetophenonesby marine fungi isolated from marine algae Bostrychia radicansand Sargassum sp. Curr. Top. Biotechnol., 2012, 7, 13-19.
  • [27] Ribeiro, S.S., Raminelli, C., Porto, A.L.M. Enzymatic resolutionby CALB of organofluorine compounds under conventionalcondition and microwave irradiation. J. Fluorine Chem., 2013,154, 53-59.[WoS]
  • [28] Kjer, J., Debbab, A., Aly, A.H., Proksch, P. Methods for isolationof marine-derived endophytic fungi and their bioactivesecondary products. Nature Protoc., 2010, 5, 479-490.[Crossref][WoS]
  • [29] Sette, L.D., Passarini, M.R.Z., Delamerlina, C., Salati, F., Duarte,M.C.T. Molecular characterization and antimicrobial activityof endophytic fungi from coffee plants. World J. Microbiol.Biotechnol., 2006, 22, 1185-1195.[Crossref][WoS]
  • [30] Yadav, J.S., Reddy, B.V.S., Sreelaksmi, C., Kumar, G.G.K.S.,Rao, A.B. Enantioselective reduction of 2-substituted tetrahydropyran-4-ones using Daucus carota plant cells. TetrahedronLett., 2008, 49, 2768-2771.
  • [31] Comasseto, J.V., Omori, A.T., Porto, A.L.M., Andrade, L.H.,Preparation of chiral organochalcogeno-a-methylbenzylalcohols via biocatalysis. The role of Daucus carota root.Tetrahedron Lett., 2004, 45,473-476.
  • [32] Kasumov, V.T., Suzergo, F.; Sahin, E., Celik, O., Aslanoglu,M. Synthesis, characterization and effect of the fluorinesubstitution on the redox reactivity and in vivo anticancerbehaviors of N polyfluorophenyl-3,5- di-tert-butylsalicylaldiminesand their Cu (II) complexes. J. Fluorine Chem., 2014,162, 78-89.[WoS]
  • [33] Inoue, K., Makino, Y., Itoh, N. Production of (R)-chiral alcoholsby a hydrogen-transfer bioreduction with NADH-dependentLeifsonia alcohol dehydrogenase (LSADH). Tetrahedron-Asymmetr., 2005, 16, 2539-2549.[Crossref]
  • [34] Naemura, K., Murata, M., Tanaka, R., Yano, M., Hirose, K., Tobe,Y. Enantioselective acylation of alcohols catalyzed by lipase QLfrom Alcaligenes sp.: A predictive active site model for lipaseQL to identify the faster reacting enantiomer of alcohol in thisacylation. Tetrahedron-Asymmetr., 1996, 7, 1581-1584.[Crossref]
  • [35] Yu, F.; Wu, Z.F.; Zhou, J.; Chan, A.S.C. Cobalt (II)-catalyzedassymmetric hydrosilylation of simple ketones using dipyridylphosphineligands in air. Org. Biomol. Chem., 2011, 9,5652-5654.[Crossref][WoS]
  • [36] Ma, J., Cahard, D. Strategies for nucleophilic, electrophilic,and radical trifluoromethylations. J. Fluorine Chem., 2007, 128,975-996.[WoS]
  • [37] Kitazume, T., Yamazaki, T., Ishikawa, N. Asymmetric reductionsof fluorinated ketones and keto esters with baker’s yeast.Nippon Kagakukai Shi., 1983, 1363-1368.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_boca-2015-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.