Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 1 | 1 |
Tytuł artykułu

Short Peptides in Minimalistic Biocatalyst Design

Treść / Zawartość
Warianty tytułu
Języki publikacji
We review recent developments in the use of short peptides in the design of minimalistic biocatalysts focusing on ester hydrolysis. A number of designed peptide nanostructures are shown to have (modest) catalytic activity. Five features are discussed and illustrated by literature examples, including primary peptide sequence, nanosurfaces/scaffolds, binding pockets, multivalency and the presence of metal ions. Some of these are derived from natural enzymes, but others, such as multivalency of active sites on designed nanofibers, may give rise to new features not found in natural enzymes. Remarkably, it is shown that each of these design features give rise to similar rate enhancements in ester hydrolysis. Overall, there has been significant progress in the development of fundamental understanding of the factors that influence binding and activity in recent years, holding promise for increasingly rational design of peptide based biocatalysts.

Opis fizyczny
  • WestCHEM/Department of Pure
    and Applied Chemistry, University of Strathclyde, Thomas Graham
    Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • WestCHEM/Department of Pure
    and Applied Chemistry, University of Strathclyde, Thomas Graham
    Building, 295 Cathedral Street, Glasgow, G1 1XL, UK
  • Advanced Science Research
    Center (ASRC) and Hunter College, City University of New York, 85 St
    Nicholas Terrace, New York, NY10031, USA
  • [1] Palmer T., Understanding enzymes, Prentice Hall/EllisHorwood, London ; New York, 1995.
  • [2] Stryer L., Biochemistry, W.H. Freeman Company, New York,1995.
  • [3] Greenwald J., Riek R., On the Possible Amyloid Origin of ProteinFolds, J. Mol. Biol., 2012, 421, 417-426.
  • [4] Carny O., Gazit E., A model for the role of short self-assembledpeptides in the very early stages of the origin of life, FASEB J.,2005, 19, 1051-1055.[Crossref]
  • [5] Neurath H., Walsh K.A., Role of Proteolytic-Enzymes inBiological Regulation, Proc. Natl. Acad. Sci. U.S.A., 1976, 73,3825-3832.
  • [6] Neurath H., Evolution of Proteolytic-Enzymes, Science., 1984,224, 350-357.
  • [7] Carter P., Wells J.A., Dissecting the Catalytic Triad of a SerineProtease, Nature., 1988, 332, 564-568.
  • [8] Li Y.S., Zhao Y.F., Hatfield S., Wan R., Zhu Q., Li X.H., McMillsM., Ma Y., Li J., Brown K.L., et al., Dipeptide seryl-histidineand related oligopeptides cleave DNA, protein, and a carboxylester, Bioorg. Med. Chem., 2000, 8, 2675-2680.[Crossref]
  • [9] Wolfenden R., Snider M.J., The depth of chemical time and thepower of enzymes as catalysts, Acc. Chem. Res., 2001, 34,938-945.[Crossref]
  • [10] Miller B.G., Wolfenden R., Catalytic proficiency: The unusualcase of OMP decarboxylase, Annu. Rev. Biochem., 2002, 71,847-885.
  • [11] Steitz T.A., Shulman R.G., Crystallographic and Nmr-Studiesof the Serine Proteases, Annu. Rev. Biophys. Bio., 1982, 11,419-444.[Crossref]
  • [12] Polgar L., The catalytic triad of serine peptidases, Call. Mol.Life. Sci., 2005, 62, 2161-2172.
  • [13] Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V.,Molecular and biotechnological aspects of microbial proteases,Microbiol. Mol. Biol. Rev., 1998, 62, 597-635.
  • [14] J. M. Berg J.L.T., L. Stryer, Biochemistry. 5th Edition., W HFreeman, New York, 2002.
  • [15] Reetz M.T., Torre C., Eipper A., Lohmer R., Hermes M., BrunnerB., Maichele A., Bocola M., Arand M., Cronin A., et al.,Enhancing the enantioselectivity of an epoxide hydrolase bydirected evolution, Org. Lett., 2004, 6, 177-180.[Crossref]
  • [16] You L., Arnold F.H., Directed evolution of subtilisin E inBacillus subtilis to enhance total activity in aqueous dimethylformamide,Protein Eng., 1996, 9, 77-83.[Crossref]
  • [17] Arnold F.H., Design by directed evolution, Acc. Chem. Res.,1998, 31, 125-131.[Crossref]
  • [18] Vriezema D.M., Aragones M.C., Elemans J.A.A.W., CornelissenJ.J.L.M., Rowan A.E., Nolte R.J.M., Self-assembled nanoreactors,Chem. Rev., 2005, 105, 1445-1489.
  • [19] Pasquato L., Pengo P., Scrimin P., Functional gold nanoparticlesfor recognition and catalysis, J. Mater. Chem., 2004, 14,3481-3487.[Crossref]
  • [20] Gorlero M., Wieczorek R., Adamala K., Giorgi A., Schinina M.E.,Stano P., Luisi P.L., Ser-His catalyses the formation of peptidesand PNAs, FEBS Lett., 2009, 583, 153-156.[WoS]
  • [21] Zhang S., Holmes T., Lockshin C., Rich A., Spontaneousassembly of a self-complementary oligopeptide to form asTable macroscopic membrane, Proc. Natl. Acad. Sci. U.S.A.,1993, 90, 3334-3338.[Crossref]
  • [22] Reches M., Gazit E., Casting metal nanowires within discreteself-assembled peptide nanotubes, Science., 2003, 300,625-627.
  • [23] Hartgerink J.D., Beniash E., Stupp S.I., Self-assembly andmineralization of peptide-amphiphile nanofibers, Science.,2001, 294, 1684-1688.
  • [24] Guler M.O., Soukasene S., Hulvat J.F., Stupp S.I., Presentationand recognition of biotin on nanofibers formed by branchedpeptide amphiphiles, Nano Lett., 2005, 5, 249-252.[Crossref]
  • [25] Jayawarna V., Ali M., Jowitt T.A., Miller A.E., Saiani A., GoughJ.E., Ulijn R.V., Nanostructured hydrogels for three-dimensionalcell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides, Adv. Mater., 2006, 18, 611-614.[Crossref]
  • [26] Yang Z., Xu B., Supramolecular hydrogels based onbiofunctional nanofibers of self-assembled small molecules, J.Mater. Chem., 2007, 17, 2385-2393.[WoS][Crossref]
  • [27] Guler M.O., Stupp S.I., A self-assembled nanofiber catalyst forester hydrolysis, J. Am. Chem. Soc., 2007, 129, 12082-12083.[WoS]
  • [28] Fleming S., Ulijn R.V., Design of nanostructures based onaromatic peptide amphiphiles, Chem. Soc. Rev., 2014, 43,8150-8177.[WoS][Crossref]
  • [29] Huang Z.P., Guan S.W., Wang Y.G., Shi G.N., Cao L.N., Gao Y.Z.,Dong Z.Y., Xu J.Y., Luo Q., Liu J.Q., Self-assembly of amphiphilicpeptides into bio-functionalized nanotubes: a novel hydrolasemodel, Journal of Materials Chemistry B, 2013, 1, 2297-2304.
  • [30] Mahler A., Reches M., Rechter M., Cohen S., Gazit E., Rigid,self-assembled hydrogel composed of a modified aromaticdipeptide, Adv. Mater., 2006, 18, 1365-1370.[Crossref]
  • [31] Zhang C.Q., Xue X.D., Luo Q., Li Y.W., Yang K.N., Zhuang X.X.,Jiang Y.G., Zhang J.C., Liu J.Q., Zou G.Z., et al., Self-AssembledPeptide Nanofibers Designed as Biological Enzymes forCatalyzing Ester Hydrolysis, Acs Nano, 2014, 8, 11715-11723.[WoS][Crossref]
  • [32] Aggeli A., Bell M., Boden N., Keen J.N., Knowles P.F., McLeishT.C.B., Pitkeathly M., Radford S.E., Responsive gels formedby the spontaneous self-assembly of peptides into polymericbeta-sheet tapes, Nature., 1997, 386, 259-262.
  • [33] Collier J.H., Messersmith P.B., Enzymatic modification ofself-assembled peptide structures with tissue transglutaminase,Bioconjugate Chem., 2003, 14, 748-755.[Crossref]
  • [34] Jung J.P., Nagaraj A.K., Fox E.K., Rudra J.S., Devgun J.M.,Collier J.H., Co-assembling peptides as defined matrices forendothelial cells, Biomaterials., 2009, 30, 2400-2410.[Crossref][WoS]
  • [35] Rufo C.M., Moroz Y.S., Moroz O.V., Stohr J., Smith T.A., Hu X.Z.,DeGrado W.F., Korendovych I.V., Short peptides self-assembleto produce catalytic amyloids, Nat. Chem., 2014, 6, 303-309.[Crossref][WoS]
  • [36] Wei Y.N., Hecht M.H., Enzyme-like proteins from an unselectedlibrary of designed amino acid sequences, Protein Eng., Des.Sel., 2004, 17, 67-75.[Crossref]
  • [37] Patel S.C., Bradley L.H., Jinadasa S.P., Hecht M.H., Cofactorbinding and enzymatic activity in an unevolved superfamily ofde novo designed 4-helix bundle proteins, Protein Sci., 2009,18, 1388-1400.[Crossref][WoS]
  • [38] Baltzer L., Broo K.S., Nilsson H., Nilsson J., Designed four-helixbundle catalysts - the engineering of reactive sites forhydrolysis and transesterification reactions of p-nitrophenylesters, Bioorg. Med. Chem., 1999, 7, 83-91.[Crossref]
  • [39] Broo K.S., Brive L., Ahlberg P., Baltzer L., Catalysis of hydrolysisand transesterification reactions of p-nitrophenyl esters by a designed helix-loop-helix dimer, J. Am. Chem. Soc., 1997, 119,11362-11372.
  • [40] Singh N., Conte M.P., Ulijn R.V., Miravet J.F., Escuder B., Insightinto the esterase like activity demonstrated by an imidazoleappended self-assembling hydrogelator, Chem. Commun., (inpress), DOI: 10.1039/c5cc04281j.[WoS][Crossref]
  • [41] Zaramella D., Scrimin P., Prins L.J., Self-Assembly of a CatalyticMultivalent Peptide-Nanoparticle Complex, J. Am. Chem. Soc.,2012, 134, 8396-8399.[WoS]
  • [42] Maeda Y., Javid N., Duncan K., Birchall L., Gibson K.F., CannonD., Kanetsuki Y., Knapp C., Tuttle T., Ulijn R.V., et al., Discoveryof Catalytic Phages by Biocatalytic Self-Assembly, J. Am. Chem.Soc., 2014, 136, 15893-15896.
  • [43] Rodriguez-Llansola F., Escuder B., Miravet J.F., SwitchablePerfomance of an L-Proline-Derived Basic Catalyst Controlledby Supramolecular Gelation, J. Am. Chem. Soc., 2009, 131,11478-11484.[WoS]
  • [44] Rodriguez-Llansola F., Miravet J.F., Escuder B., A supramolecularhydrogel as a reusable heterogeneous catalyst for thedirect aldol reaction, Chem. Commun., 2009, 7303-7305.[WoS][Crossref]
  • [45] Pasquato L., Rancan F., Scrimin P., Mancin F., Frigeri C.,N-methylimidazole-functionalized gold nanoparticles ascatalysts for cleavage of a carboxylic acid ester, Chem.Commun., 2000, 2253-2254.[Crossref]
  • [46] Zaramella D., Scrimin P., Prins L.J., Catalysis of TransesterificationReactions by a Self-Assembled Nanosystem, Int. J. Mol.Sci., 2013, 14, 2011-2021.[Crossref][WoS]
  • [47] Casey J.P., Barbero R.J., Heldman N., Belcher A.M., Versatile deNovo Enzyme Activity in Capsid Proteins from an EngineeredM13 Bacteriophage Library, J. Am. Chem. Soc., 2014, 136,16508-16514.[WoS]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.