PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 1 | 1 |
Tytuł artykułu

Biocatalytic Acetylation of Primary Amines by Lipases under Orbital Shaking and Microwave Radiation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses the effects of the concentration of lipases, temperature and solvent on the enzymatic acetylation of primary amines. (±)-Heptan-2-amine 1, (±)-4-phenylbutan-2-amine 2, (±)-1,2,3,4-tetrahydronaphthalen-1-amine 3 and (±)-2-methylcyclohexan-1-amine 4 were acetylated using 11 lipases to obtain amides under orbital shaking and microwave radiation. Under microwave radiation the same amines were acetylated only using the CALB. (±)-Heptan-2-amine 1 was subjected to kinetic resolution, under orbital shaking for 7 h employing CALB and ethyl acetate as acylating agent, and converted into (R)-N- (heptan-2-yl)acetamide 5 (c = 42%, 88% eep, hexane c = 52%, 81% eep, isopropyl ether; c = 40%, 65% eep, toluene). The reaction was fast (15 s) under microwave radiation in hexane and yielded acetamide 4 in high conversion (c = 91%), but without selectivity (5% eep).
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2015-02-24
zaakceptowano
2015-06-12
online
2015-07-24
Twórcy
  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Química Ambiental, J. Santa
    Angelina, São Carlos, 13563-120, SP, Brazil
  • Laboratório de Química Orgânica e
    Biocatálise, Instituto de Química de São Carlos, Universidade de
    São Paulo, Av. João Dagnone, 1100, Química Ambiental, J. Santa
    Angelina, São Carlos, 13563-120, SP, Brazil
Bibliografia
  • [1] Silverman R.B., Holladay M.W., The Organic Chemistry of DrugDesign and Drug Action, Elsevier Academic Press, (2ª Ed.),p.427- 428, 2014.
  • [2] Radu A., Moisǎ M.E., Toșa M.I., Dima N., Zaharia V., Irimie F.D.,Candida antarctica lipases acting as versatile catalysts for thesynthesis of enantiopure (R)- and (S)-1-(2-phenylthiazol-4-yl)ethanamines, J. Mol. Catal. B-Enzym., 2014, 107, 114-119.[WoS]
  • [3] Dunn P.J., Hii K.K., Krische M.J., Williams M.T., SustainableCatalysis: Challenges and Practices for the Pharmaceutical andFine Chemical Industries, John Wiley & Sons: New Jersey. p.63-64, 2013.
  • [4] Paetzold J., Bäckvall J. E., Chemoenzymatic dynamic kineticresolution of primary amines, J. Am. Chem. Soc., 2005, 127,17620-17621.
  • [5] Ghislieri D., Turner N.J., Biocatalytic approaches to thesynthesis of enantiomerically pure chiral amines, Top. Catal.,2014, 57, 284-300.[WoS]
  • [6] Zaed A.M., Grafton M.W., Ahmad S., Sutherland A., Asymmetricsynthesis of cis-aminocyclopentenols, building blocks formedicinal chemistry, J. Org. Chem., 2014, 79, 1511-1515.[Crossref]
  • [7] Tayler K. M., Snyder S. H., Amphetamine: differentiation by dand I isomers of behavior involving brain norepinephrine ordopamine, Science, 1970, 168, 1487-1489.
  • [8] Hajòs G.T., Garattini S., A note on the effect of (+)- and(−)-amphetamine on lipid metabolism, J. Pharm. Pharmacol.,1973, 25, 418-419.[Crossref]
  • [9] Murase K., Mase T., Ida H., Takahashi K., Murakami M.,Absolute configurations of four isomers of 3-formamido-4-hydroxy-α-[[N-(p-methoxy-α-methylphenethyl) amino] methyl]benzyl alcohol, a potent β-adrenoreceptor stimulant, Chem.Pharm. Bull., 1978, 26, 1123-1129.[Crossref]
  • [10] Clifton J. E., Collins I., Hallett P., Hartley D., Lunts L. H. C.,Wicks P. D.,. Arylethanolamines derived from salicylamide withalpha- and beta-adrenoceptor blocking activities. Preparationof labetalol, its enantiomers and related salicylamides, J. Med.Chem., 1982, 25, 670-679.[Crossref]
  • [11] Gonzalez-Sabin J., Gotor V., Rebolledo F., Cal-b-catalyzedresolution of some pharmacologically interesting -substitutedisopropylamines, Tetrahedron. Asymmetry, 2002, 13,1315-1320.[Crossref]
  • [12] Kappe C.O., Controlled microwave heating in modern organicsynthesis, Angew. Chem. Int. Ed., 2004, 43, 6250-6284.[Crossref]
  • [13] Rastogi S., Bhalla V., Arora V., Microwave-assisted efficientsynthesis and antifungal evaluation of quinoxaline derivatives,Indian J. Drugs., 2014, 2, 49-55
  • [14] Polshettiwar V., Varma R.S., Aqueous Microwave AssistedChemistry: Synthesis and Catalysis, Royal Society of Chemistry:Cambridge, p. 125, 2010.
  • [15] Devendran S., Yadav G.D., Microwave assisted enzymatickinetic resolution of (±)-1-phenyl-2-propyn-1-ol in nonaqueousmedia, Biomed Res. Int., 2014, 2014, 1-9.[WoS][Crossref]
  • [16] Izquierdo D.F., Bernal J.M, Burguete M.I., García- VerdugoE., Lozano P., Luis S.V., An efficient microwave-assistedenzymatic resolution of alcohols using a lipase immobilized onsupported ionic liquid-like phases (SILLPs), RSC Adv, 2013, 3,13123-13126.
  • [17] Shinde S.D., Yadav G.D., Process intensification of immobilizedlipase catalysis by microwave irradiation in the synthesis of4-chloro-2-methylphenoxyacetic acid (MCPA) esters, Biochem.Eng., 2014, 90, 96-102.[WoS]
  • [18] Rós P.C.M, Castro H.F., Carvalho A.K.F., Soares C.M.F., MoraesF.F., Zanin G.M., Microwave-assisted enzymatic synthesis ofbeef tallow biodiesel, J. Ind. Microbiol. Biotechnol., 2012, 39,529-536.[Crossref][WoS]
  • [19] Chena Z., LibY, Linc S., Weia M., Dua F., Ruana G., Developmentof continuous microwave-assisted protein digestion withimmobilized enzyme, Biochem. Biophys. Res. Commun., 2014,445, 491-496.[WoS]
  • [20] Daniel R.M., Dines M., Petach H. H., The denaturation anddegradation of stable enzymes at high temperatures, Biochem.J., 1996, 317, 1-11.
  • [21] Hayes B.L., Microwave Synthesis: Chemistry at the Speed ofLight, CEM Publishing: Matthews,NC. p.18, 2002.
  • [22] Rejasse B., Lamare S., Legoy M.-D., Besson T., Stabilityimprovement of immobilized Candida antarctica lipase B inan organic medium under microwave radiation, Org. Biomol.Chem., 2004, 2, 1086-1089.[Crossref]
  • [23] Yadav G.D., Lathi P.S., Synergism between microwaveand enzyme catalysis in intensification of reactions andselectivities: transesterification of methyl acetoacetate withalcohols, J Mol. Catal. A- Chem., 2004, 223, 51-56.
  • [24] Gotor-Fernandez V., Busto E., Gotor V., Candida antarcticalipase B: An ideal biocatalyst for the preparation ofnitrogenated organic compounds, 2006, 348, 797-912.
  • [25] Araujo Y.J.K, Porto A.LM., aza-Michael addition of primaryAmines by lipases and microwave irradiation: a green protocolfor the synthesis of propanenitrile derivatives, Curr. Microw.Chem., 2014, 1, 87-93.
  • [26] Ribeiro S.S., Uliana M.P., Brocksom T.J., Porto A.L.M., Analysisby GC-MS of an aza-Michael reaction catalyzed by CALB on anorbital shaker and under microwave irradiation, Global J. Sci.Frontier Res.: B Chem., 2014, 7-21.
  • [27] Ribeiro S.S., Oliveira J.R., Porto A.L.M., Lipase-catalyzed kineticresolution of (±)-mandelonitrile under conventional conditionand microwave irradiation, J. Braz. Chem. Soc., 2012, 23,1395-1399.[Crossref][WoS]
  • [28] Ribeiro S.S., Raminelli C., Porto A.L.M., Enzymatic resolutionby CALB of organofluorine compounds under conventionalcondition and microwave irradiation, J. Fluor. Chem., 2013, 154,53-59.[WoS]
  • [29] Armarego W., Perrin D.D., Purification of laboratory chemicals,Butterworth-Heinemann: Oxford, (4ª), 1997.
  • [30] Narayanan C., Sawant, B., Conformation of the carbonyl groupin secondary amides, Tetrahedron Lett., 1971, 12, 1321-1324.[Crossref]
  • [31] Chalard P., Bertrand M., Canet I., Thery V., Remuson R., JeminetG., Determination of absolute configurations of amines andamino acids using nonchiral derivatizing agents (ncda) anddeuterium NMR, Org. Lett., 2000, 2, 2431-2434.[Crossref]
  • [32] Kim M., Kim W., Han K., Choi Y.,Park J., Dynamic kineticresolution of primary amines with a recyclable Pd nanocatalystfor racemization, Org. Lett., 2007, 9, 1157-1159.[WoS][Crossref]
  • [33] Laurent A., Locher P., Mison P., Désamination nitreuse enmilieu aprotique méthyl-2 cyclohexylamines, Bull. Soc. Chim.Fr., 1972, 4, 1369-1374.
  • [34] Zaks A., Klibanov A., The effect of water on enzyme action inorganic media, J. Biol. Chem., 1988, 263, 8017-8021.
  • [35] Berendsen W., Gendrot G., Resnick S., Reuss M., Kineticmodeling of lipase catalyzed hydrolysis of (R/S)-1-methoxy-2-propylacetate as a model reaction for production of chiralsecondary alcohols, J. Biotechnol., 2006, 121, 213-226.]
  • [36] Lerin L. A., Loss R. A, Remonatto D., Zenevicz M. C., BalenM., Oenning Netto V., Ninow J. L., Trentin C. M., OliveiraJ. V., Oliveira D., A review on lipase-catalyzed reactions inultrasound-assisted systems, Bioprocess Biosyst Eng., 2014,37, 2381–2394.[WoS][Crossref]
  • [37] Kirilin A., Sahin S., Mäki-Arvela P., Wärnå J., Salmi T., Murzin D.,Kinetics and modeling of (R,S)-1-phenylethanol acylation overlipase, Int. J. Chem. Kinet., 2010, 42, 629-639.[WoS][Crossref]
  • [38] Hirata H., Kawanishi M., Iwata Y., Sakaki K., Yanagishita H.,Kinetic studies on lipase-catalyzed acetylation of 2-alkanol 309-317.
  • [39] Jung H., Koh J., Kim M., Park J., Practical ruthenium/lipasecatalyzed asymmetric transformations of ketones and enolacetates to chiral acetates, Org. Lett., 2000, 2, 2487-2490.[Crossref]
  • [40] Verzijl G., de Vries J., Broxterman Q., Removal of the acyl donorresidue allows the use of simple alkyl esters as acyl donorsfor the dynamic kinetic resolution of secondary alcohols,Tetrahedron: Asymmetry, 2005,16, 1603-1610.[Crossref]
  • [41] Nawani N., Singh R., Kaur J., Immobilization and stabilitystudies of a lipase from thermophilic Bacillus sp: the effect ofprocess parameters on immobilization of enzyme, Electron. J.Biotechn., 2006, 9, 0-0.[Crossref]
  • [42] Yadav G., Borkar I., Kinetic and mechanistic investigation ofmicrowave-assisted lipase catalyzed synthesis of citronellylacetate, Ind. Eng. Chem. Res., 2008, 48, 7915-7922.[WoS]
  • [43] Souza R., Matos L., Gonçalves K., Costa I., Babics I., LeiteS., Oestreicher E., Antunes O., Michael additions of primaryand secondary amines to acrylonitrile catalyzed by lipases,Tetrahedron Lett., 2009, 50, 2017-2018.[Crossref]
  • [44] Nechab M., Azzi N., Vanthuyne N., Bertrand M., Gastaldi S.,Gil G., Highly selective enzymatic kinetic resolution of primaryamines at 80 c: a comparative study of carboxylic acids andtheir ethyl esters as acyl donors, J. Org. Chem., 2007,72,6918–6923.[WoS]
  • [45] Tsuchihashi G., Iriuchijima S., Maniwa K., Asymmetricsynthesis using α-sulfinylcarbanions. II. Synthesis of opticallyactive amines, Tetrahedron Lett., 1973, 14, 3389–3392.[Crossref]
  • [46] Masutani K., Minowa T., Hagiwara Y., Mukaiyama T., Cyanationof alcohols with diethyl cyanophosphonate and 2,6-dimethyl-1,4-benzoquinone by a new type of oxidation–reductioncondensation, Bull. Chem. Soc. Jpn., 2009, 79, 1106-1117.
  • [47] Enders D., Harnying W., A highly efficient asymmetric synthesisof homotaurine derivatives via diastereoselective ring-openingof γ-sultones, Synthesis, 2004, 17, 2910-2918.
  • [48] Garcia-Urdiales E., Rebolledo F., Gotor V., Enzymaticone-pot resolution of two nucleophiles: alcohol and amine,Tetrahedron. Asymmetry, 2000, 11, 1459-1463.[Crossref]
  • [49] Skupinska K., McEachern E., Baird I., Skerlj R., BridgerG., Enzymatic resolution of bicyclic 1-heteroarylaminesusing Candida antarctica lipase B, J. Org. Chem., 2003, 68,3546-3551.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_boca-2015-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.