Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In this communication, hollow bioactive glass (BG) nanofibers were fabricated via a single-nozzle electrospinning method. The morphology of the prepared hollow BG nanofibers was observed by SEM and TEM, and the results showed that BG nanofibers had a continuous hollow interior. The hollow BG nanofibers were incubated in simulated body fluid (SBF) to investigate their apatitemineralization ability, and the result showed that after incubation for 6 h a flower-like apatite was observed on the surface of hollowBGnanofibers, and the Fourier transform infrared (FTIR) result further confirmed the formation of apatite. The results suggested that hollow BG nanofibers could be used for drug delivery and bone regeneration applications due to their unique hollow structure and bioactivity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2015-06-16
zaakceptowano
2015-09-06
online
2015-11-03
Twórcy
autor
-
State Key Laboratory of High Performance
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences, Shanghai, 200050, China
autor
-
State Key Laboratory of High Performance
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences, Shanghai, 200050, China
autor
-
State Key Laboratory of High Performance
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences, Shanghai, 200050, China
autor
-
State Key Laboratory of High Performance
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences, Shanghai, 200050, China
Bibliografia
- [1] Hamadouche M., Meunier A., Greenspan D.C., Blanchat C.,Zhong J.P.P., La Torre G.P., et al. Long-term in Vivo Bioactivityand Degradability of Bulk Sol-gel Bioactive Glasses, J. Biomed.Mater. Res. 2001, 54, 560–566.[Crossref]
- [2] Peitl O., LaTorre G.P., Hench L.L., Effect of Crystallization onApatite-layer Formation of Bioactive Glass 45S5, J. Biomed.Mater. Res. 1996, 30, 509–514.
- [3] Vogel M., Voigt C., Gross U.M.,Muller-Mai C.M., In Vivo Comparisonof Bioactive Glass Particles in Rabbits, Biomaterials 2001,22, 357–362.[Crossref]
- [4] Valerio P., Pereira M.M., Goes A.M., Leite M.F., The Effect of IonicProducts from Bioactive Glass Dissolution on Osteoblast Proliferationand Collagen Production, Biomaterials 2004, 25, 2941–2948.[Crossref]
- [5] Xia W., Chang J., Preparation and Characterization of Nanobioactive-glasses (NBG) by A Quick Alkali-mediated Sol-gelMethod, Mater. Lett. 2007, 61, 3251–3253.[Crossref][WoS]
- [6] Gough J.E., Notingher I., Hench L.L., Osteoblast Attachmentand Mineralized Nodule Formation on Rough and Smooth 45S5Bioactive Glass Monoliths, J. Biomed. Mater. Res. Part A. 2004,68A, 640–650.[Crossref]
- [7] Gough J.E., Jones J.R., Hench L.L., Nodule Formation and Mineralisationof Human Primary Osteoblasts Cultured on A PorousBioactive Glass Scaffold, Biomaterials 2004, 25, 2039–2046.[Crossref]
- [8] Clupper D.C., Gough J.E., Hall M.M., Clare A.G., LaCourse W.C.,Hench L.L., In Vitro Bioactivity of S520 Glass Fibers and InitialAssessment of Osteoblast Attachment, J. Biomed. Mater. Res.Part A 2003, 67A, 285–2894.
- [9] Quintero F., Pou J., Comesana R., Lusquinos F., Riveiro A., MannA.B., et al., Laser Spinning of Bioactive Glass Nanofibers, Adv.Funct. Mater. 2009, 19, 3084–3090.[Crossref][WoS]
- [10] Kim H.W., Kim H.E., Knowles J.C., Production and Potential ofBioactive Glass Nanofibers as A Next-generation Biomaterial,Adv. Funct. Mater. 2006, 16, 1529–1535.[Crossref]
- [11] Wang T., Chai F., Fu Q., Zhang L., Liu H., Li L., et al., UniformHollow Mesoporous Silica Nanocages for Drug Delivery in Vitroand in Vivo for Liver Cancer Therapy, J. Mater. Chem. 2011, 21,5299–5306.[WoS][Crossref]
- [12] Lei B., Chen X.,Wang Y., Zhao N., Synthesis and in Vitro Bioactivityof Novel Mesoporous Hollow Bioactive Glass Microspheres,Mater. Lett. 2009, 63, 1719–1721.[Crossref]
- [13] Xie J., Blough E.R.,Wang C.H., Submicron Bioactive Glass Tubesfor Bone Tissue Engineering, Acta Biomater. 2012, 8, 811–819.[Crossref][WoS]
- [14] Wu L., Dou Y., Lin K., Zhai W., Cui W., Chang J., HierarchicallyStructured Nanocrystalline Hydroxyapatite Assembled HollowFibers as A Promising Protein Delivery System, Chem. Commun.2011, 47, 11674–11676.[WoS][Crossref]
- [15] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T., SolutionsAble to Reproduce in Vivo Surface-structure Changes inBioactive Glass-Ceramic A-W3, J. Biomed. Mater. Res. 1990, 24,721–734.[Crossref]
- [16] Ribeiro C., Rigo E., Sepulveda P., Bressiani J., Bressiani A., Formationof Calcium Phosphate Layer on Ceramics with DifferentReactivities, Mater. Sci. Engin. C 2004, 24, 631–636.[Crossref]
- [17] Li X., Chen X., Miao G., Liu H., Mao C., Yuan G., et al., Synthesisof Radial Mesoporous Bioactive Glass Particles to Deliver OsteoactivinGene, J. Mater. Chem. B 2014, 2, 7045–7054.[Crossref]
- [18] Izquierdo-Barba I., Salinas A., Vallet-Regí M., In vitro CalciumPhosphate Layer Formation on Sol-gel Glasses of the CaO-SiO2System, J. Biomed. Mater. Res. 1999, 47, 243–250.
- [19] Izquierdo-Barba I., Salinas A., Vallet-Regí M., Effect of the ContinuousSolution Exchange on the in vitro Reactivity of a CaOSiO2Sol-gel Glass, J. Biomed. Mater. Res. 2000, 51, 191–199.
- [20] Li X.H., Shao C.L., Liu Y.C., A Simple Method for ControllablePreparation of Polymer Nanotubes via A Single Capillary Electrospinning,Langmuir 2007, 23, 10920–10923.[Crossref][WoS]
- [21] Wang W., Zhou J., Zhang S., Song J., Duan H., Zhou M., et al.A Novel Method to Fabricate Silica Nanotubes Based on PhaseSeparation Effect, J. Mater. Chem. 2010, 20, 9068–9072.[Crossref][WoS]
- [22] Roman J., Padilla S., Vallet-Regi M., Sol-gel Glasses as Precursorsof Bioactive Glass Ceramics, Chem. Mater. 2003, 15, 798–806.[Crossref]
- [23] Poologasundarampillai G., Wang D., Li S., Nakamura J., BradleyR., Lee P.D., et al., Cotton-wool-like Bioactive Glasses for BoneRegeneration, Acta Biomater. 2014, 10, 3733–3746.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_bglass-2015-0013