Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 1 | 1 |
Tytuł artykułu

Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride

Treść / Zawartość
Warianty tytułu
Języki publikacji
To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route. Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.

Opis fizyczny
  • Grupo Interdisciplinario
    en Materiales-Universidad Católica de Salta (IESIINGUCASAL),
    Instituto de Tecnologías y Ciencias de Ingeniería-
    Universidad Buenos Aires-Consejo Nacional de Investigaciones
    Científicas y Técnicas (INTECIN UBA-CONICET), Campo Castañares
    s/n, Salta, Argentina
  • 3B’s Research Group-Biomaterials,
    Biodegradables and Biomimetics, University of Minho, Headquarters
    of the European Institute of Excellence on Tissue Engineering
    and Regenerative Medicine, P-4806-909 Taipas, Guimarães, Portugal;
    ICVS/3B’s Associate Laboratory, Braga/Guimarães, Portugal
  • Instituto de Investigaciones para la Industria
    Química - Consejo Nacional de Investigaciones Científicas y Técnicas (INIQUI - CONICET), Universidad Nacional de Salta (UNSa), Av.
    Bolivia 5150, Salta, Argentina
  • 3B’s Research Group-Biomaterials,
    Biodegradables and Biomimetics, University of Minho, Headquarters
    of the European Institute of Excellence on Tissue Engineering
    and Regenerative Medicine, P-4806-909 Taipas, Guimarães, Portugal;
    ICVS/3B’s Associate Laboratory, Braga/Guimarães, Portugal
  • Grupo Interdisciplinario
    en Materiales-Universidad Católica de Salta (IESIINGUCASAL),
    Instituto de Tecnologías y Ciencias de Ingeniería-
    Universidad Buenos Aires-Consejo Nacional de Investigaciones
    Científicas y Técnicas (INTECIN UBA-CONICET), Campo Castañares
    s/n, Salta, Argentina
  • [1] Diefenbeck M., Mückley T., Hofmann G.O., Prophylaxis andtreatment of implant-related infections by local application ofantibiotics, Injury 2006, 37 Suppl 2, S95–104.[Crossref]
  • [2] Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M.,Wound healing dressings and drug delivery systems: a review,J. Pharm. Sci. 2008, 97, 2892–2923.[Crossref][WoS]
  • [3] Gao P., Nie X., Zou M., Shi Y., Cheng G., Recent advances inmaterialsfor extended-release antibiotic delivery system, J. Antibiot(Tokyo) 2011, 64, 625–634.[Crossref]
  • [4] Kittinger C., Marth E., Windhager R., Weinberg A.M., Zarfel G.,Baumert R., Felisch S., Kuehn K.D., Antimicrobial activity of gentamicinpalmitate against high concentrations of Staphylococcusaureus, J. Mater. Sci. Mater. Med. 2011, 22, 1447–1453.[Crossref][WoS]
  • [5] Chang W.K., Srinivasa S, MacCormick A.D., Hill A.G.,Gentamicin-collagen implants to reduce surgical site infection:systematic review and meta-analysis of randomizedtrials, Ann. Surg. 2013, 258, 59–65.
  • [6] Bertesteanu S., Triaridis S., Stankovic M., Lazar V., ChifiriucM.C., Vlad M., Grigore R., Polymicrobial wound infections:pathophysiology and current therapeutic approaches, Int. J.Pharm. 2014, 463, 119–126.[WoS]
  • [7] Perumal S., Ramadass S.K., Madhan B., Sol-gel processedmupirocin silica microspheres loaded collagen scaffold: a synergisticbio-composite for wound healing, Eur. J. Pharm. Sci.2014, 52, 26–33.[WoS]
  • [8] Perchyonok V.T., Reher V., Zhang S., Basson N., Grobler S., Evaluationof nystatin containing chitosan hydrogels as potentialdual action bio-active restorative materials: in vitro approach,J. Funct. Biomater. 2014, 5, 259–272.[Crossref]
  • [9] Elsner J.J., Berdicevsky I., Zilberman M., In vitro microbial inhibitionand cellular response to novel biodegradable compositewound dressings with controlled release of antibiotics, ActaBiomater. 2011, 7, 325–336.[Crossref][WoS]
  • [10] Stigter M., Bezemer J., De Groot K., Layrolle P., Incorporationof different antibiotics into carbonated hydroxyapatite coatingson titanium implants, release and antibiotic eflcacy, J. ControlRelease 2004, 99, 127–137.[Crossref]
  • [11] Miola M., Vitale-Brovarone C., Mattu C., Verné E., Antibioticloading on bioactive glasses and glassceramics: an approachto surface modification, J. Biomater. Appl. 2012, 28, 308–319.[WoS][Crossref]
  • [12] Hum J., Boccaccini A.R., Bioactive glasses as carriers for bioactivemolecules and therapeutic drugs: a review, J. Mater Sci.Mater. Med. 2012, 23, 2317–2333.[Crossref]
  • [13] Arcos D., Vallet-Regí M., Bioceramics for drug delivery, ActaMater. 2013, 46, 890–911.[Crossref]
  • [14] Caridade S.G., Merino E.G., Alves N.M., Bermudez Vde Z., BoccacciniA.R., Mano J.F., Chitosan membranes containing microor nano-size bioactive glass particles: evolution of biomineralizationfollowed by in situ dynamic mechanical analysis, J.Mech. Behav. Biomed. Mater. 2013, 20,173–183.[WoS][Crossref]
  • [15] Hong Z., Luz G.M., Hampel P.J., Jin M., Liu A., Chen X., Mano J.F.,Mono-dispersed bioactive glass nanospheres: preparation andeffects on biomechanics of mammalian cells, J. Biomed. Mater.Res. A 2010, 95A, 747–754.[Crossref][WoS]
  • [16] Lin C.,Mao C., Zhang J., Li Y., Chen X., Healing effect of bioactiveglass ointment on full-thickness skin wounds, Biomed. Mater.2012, 7, 045017.[Crossref][WoS]
  • [17] Sapadin A.N., Fleischmajer R., Tetracyclines: nonantibioticproperties and their clinical implications, J. Am. Acad. Dermatol.2006, 54, 258–265.[Crossref]
  • [18] Ruhe J.J., Menon A., Tetracyclines as an oral treatment option forpatients with community onset skin and soft tissue infectionscaused by methicillin-resistant Staphylococcus aureus, Antimicrob.Agents Chemother. 2007, 51, 3298–32303.[WoS][Crossref]
  • [19] Harless K., Borlaug G., Monson T.A., Stemper M.E., Davis J.P.,Abing A.E., Shelerud J.F., An investigation of antibiotic susceptibilityto empiric therapy for community-associated methicillinresistantStaphylococcus aureus, W.M.J. 2014, 113, 59–63.
  • [20] Enoch D.A., Karas J.A., Aliyu S.H., Oral antimicrobial optionsfor the treatment of skin and soft-tissue infections caused bymethicillin-resistant Staphylococcus aureus (MRSA) in the UK,Int. J. Antimicrob. Agents 2009, 33, 497–502.[Crossref]
  • [21] Amin A.N., Cerceo E.A., Deitelzweig S.B., Pile J.C., RosenbergD.J., Sherman B.M., Hospitalist perspective on the treatment ofskin and soft tissue infections,Mayo Clin. Proc. 2014, 89, 1436–1451.[WoS][Crossref]
  • [22] Domingues Z.R., Cortés M.E., Gomes T.A., Diniz H.F., FreitasC.S., Gomes J.B., Faria A.M., Sinisterra R.D., Bioactive glass as adrug delivery system of tetracycline and tetracycline associatedwith beta-cyclodextrin, Biomaterials 2004, 25, 327–333.[Crossref]
  • [23] Kaitila I., The mechanism by which tetracycline hydrochlorideinhibits mineralization in vitro, Biochim. Biophys. Acta 1971,244, 584–594.
  • [24] Dashti A., Ready D., Salih V., Knowles J.C., Barralet J.E., WilsonM., Donos N., Nazhat S.N., In vitro antibacterial eflcacy oftetracycline hydrochloride adsorbed onto Bio-Oss bone graft, J.Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 394–400.[Crossref]
  • [25] Andrade A.L., Manzi D., Domingues R.Z., Tetracycline andpropolis incorporation and release by bioactive glassy compounds,J. Non-Cryst Solids 2006, 352, 3502–3507.[WoS]
  • [26] Andrade A.L., Souza D.M., Vasconcellos W.A., Ferreira R.V.,Domingues RZ., Tetracycline and/or hydrocortisone incorporationand release by bioactive glasses compounds, J. Non-CrystSolids 2009, 355, 811–816.[WoS]
  • [27] Cavalu S., Banica F., Gruian C., Vanea E., Goller G., Simon V., Microscopicand spectroscopic investigation of bioactive glassesfor antibiotic controlled release, J. Mol. Struct. 2013, 1040, 47–52.
  • [28] Zhao L.Z., Yan X.X., Zhou X.F., Zhou L., Wang H.N., Tang H.W.,Chengzhong Y., Mesoporous bioactive glasses for controlleddrug release, Micropor Mesopor Mat 2008, 109, 210–215.[Crossref]
  • [29] Rivadeneira J., Di Virgilio A.L., Audisio C., Boccaccini A.R.,Gorustovich A., Evaluation of antibacterial and cytotoxic effectsof nano-sized bioactive glass/collagen composites releasingtetracycline hydrochloride, J. Appl. Microbiol. 2014, 116, 1438–1446.[WoS][Crossref]
  • [30] Luz G.M., Mano J.F., Preparation and characterization of bioactiveglass nanoparticles prepared by sol-gel for biomedical applications,Nanotechnology 2011, 22, 494014.[Crossref]
  • [31] Kokubo T., Takadama H., How useful is SBF in predicting in vivobone bioactivity? Biomaterials 2006, 27, 2907–2915.[Crossref]
  • [32] Stigter M., de Groot K., Layrolle P., Incorporation of tobramycininto biomimetic hydroxyapatite coating on titanium, Biomaterials2002, 23, 4143–4153.[Crossref]
  • [33] Melville A., Rodríguez-Lorenzo L., Forsythe J., Effects of the calcinationtemperature on the drug delivery behaviour of ibuprofenfrom hydroxyapatie powders, J. Mater. Sci. Mater. Med.2008, 19, 1187–1195.[Crossref]
  • [34] Peles Z., Zilberman M., Novel soy protein wound dressings withcontrolled antibiotic release: mechanical and physical properties,Acta Biomater. 2012, 8, 209–217.[Crossref]
  • [35] Wang D., Miller S.C., Kopeckova P., Kopecek J., Bone targetingmacromolecular therapeutics, Adv Drug Deliv Rev 2005, 57, 1049–1076.[Crossref][WoS]
  • [36] Huang W.C., Zeng H., Weng L.L., Synthesis of tetracyclineanalogs, Chinese Chem. Lett. 2008, 19, 19–22.[Crossref]
  • [37] Oyane A., Yokoyama Y., Uchida M., Ito A., The formation of anantibacterial agent-apatite composite coating on a polymer surfaceusing a metastable calcium phosphate solution, Biomaterials2006, 27, 3295–3303.[Crossref]
  • [38] Soundrapandian C., Mahato A., Kundu B., Datta S., Sa B., BasuD., Development and effect of different bioactive silicate glassscaffolds: in vitro evaluation for use as a bone drug delivery system,J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12.[WoS][Crossref]
  • [39] Sepulveda P., Jones J.R., Hench L.L., Characterization of meltderived45S5 and sol–gel-derived 58S bioactive glasses, J.Biomed. Mater. Res. 2001, 58, 734–740.[Crossref]
  • [40] Lei B., Chen X.F., Wang Y.J., Zhao N.R., Du C, Fang L.M., Surfacenanoscale patterning of bioactive glass to support cellulargrowth and differentiation, J. Biomed. Mater. Res. Part A 2010,94A, 1091–1099.[WoS]
  • [41] van de Belt H., Neut D., Uges D.R., SchenkW., van Horn J.R., vander Mei H.C., Busscher H.J., Surface roughness, porosity andwettability of gentamicin-loaded bone cements, and their antibioticrelease, Biomaterials 2000, 21, 1981–1987.
  • [42] Campoccia D., Montanaro L., Speziale P., Arciola C.R.,Antibiotic-loaded biomaterials and the risks for the spreadof antibiotic resistance following their prophylactic andtherapeutic clinical use, Biomaterials 2010, 31, 6363–6377.[WoS][Crossref]
  • [43] Edwards R., Harding K.G., Bacteria and wound healing, Curr.Opin. Infect. Dis. 2004, 17, 91–96.[Crossref]
  • [44] Zilberman M., Elsner J.J., Antibiotic-eluting medical devices forvarious applications, J. Control Release 2008, 130, 202–215.[WoS][Crossref]
  • [45] Desrousseaux C., Sautou V., Descamps S., Traoré O.J., Modificationof the surfaces of medical devices to prevent microbialadhesion and biofilm formation, Hosp Infect 2013, 85, 87–93.[WoS][Crossref]
  • [46] Rivadeneira J., Carina Audisio M., Boccaccini A.R., GorustovichA.A., In vitro antistaphylococcal effects of a novel 45S5bioglass/agar–gelatin biocomposite films, J. Appl. Microbiol.2013, 115, 604–612.[Crossref][WoS]
  • [47] Pratten J., Nazhat S.N., Blaker J.J., Boccaccini A.R., In vitro attachmentof S. epidermidis to surgical sutures with and withoutAg-containing bioactive glass coating, J Biomater Appl 2004, 19,47–57.[Crossref]
  • [48] Misra S.K., Ansari T.I., Valappil S.P., Mohn D., Philip S.E., StarkW.J., Roy I., Knowles J.C., Salih V., Boccaccini A.R., Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissueengineering applications, Biomaterials 2010, 31, 2806–2815.[Crossref]
  • [49] Rivadeneira J., Di Virgilio A.L., Audisio M.C., Boccaccini A.R.,Gorustovich A.A., Evaluation of the antibacterial effects ofvancomycin hydrochloride released from agar-gelatin-bioactiveglass composites, Biomed Mater 2015, 10, 015011[WoS][Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.