Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 1 | 1 |
Tytuł artykułu

Novel Highly Degradable Chloride Containing Bioactive Glasses

Treść / Zawartość
Warianty tytułu
Języki publikacji
Addition of CaF2 to a silicate bioactive glass favours formation of fluorapatite, which is less soluble in acidic environment than hydroxyapatite. However, excess CaF2 in the glass is problematic, owing to the formation of crystalline calcium fluoride rather than fluorapatite on immersion. In this paper we investigate chloride as an alternative to fluoride in bioactive silicate glasses and in particular their bioactivity for the first time. Meltderived bioactive glasses based on SiO2-P2O5-CaO-CaCl2 with varying CaCl2 contents were synthesised and characterised by DSC. Chemical analysis of the chloride content was performed by using an ion selective electrode. Glass density was determined using Helium Pycnometry. The glass bioactivity was investigated in Tris buffer. Ion release measurements were carried out by using ICP-OES. The chemical analysis results indicated that the majority of the chloride is retained in the Q2 type silicate glasses during synthesis. Tg and glass density reduced with increasing CaCl2 content. Apatite-like phase formation was confirmed by FITR, XRD and 31P MAS-NMR. The results of the in vitro studies demonstrated that the chloride containing bioactive glasses are highly degradable and form apatite-like phase within three hours in Tris buffer and, therefore, are certainly suitable for use in remineralising toothpastes. The dissolution rate of the glass was found to increase with CaCl2 content. Faster dissolving bioactive glasses may be attractive for more resorbable bone grafts and scaffolds.

Opis fizyczny
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University
    of London, Mile End Road, London E1 4NS, United Kingdom
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University
    of London, Mile End Road, London E1 4NS, United Kingdom
  • Otto-Schott-Institut, Friedrich-Schiller-Universität
    Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University
    of London, Mile End Road, London E1 4NS, United Kingdom
  • ---
  • [1] Hench L.L., Day D.E., Holand W., Rheinberger V.M., Glass andMedicine, Int. J. Appl. Glass Sci. 2010, 1, 104–117[Crossref]
  • [2] Hench L.L., The story of Bioglass (R), J. Mater. Sci. Mater. Med.2006, 17, 967–978[Crossref]
  • [3] Jones J.R., Review of bioactive glass: From Hench to hybrids,Acta Biomater. 2013, 9, 4457–4486[Crossref][WoS]
  • [4] Tai B.J., Bian Z., Jiang H., Greenspan D.C., Zhong J., Clark A.E.,et al., Anti-gingivitis effect of a dentifrice containing bioactiveglass (NovaMin (R)) particulate, J. Clin. Periodontol. 2006, 33,86–91[Crossref]
  • [5] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M.,McKay I.J., et al., ’Smart’ acid-degradable zinc-releasing silicateglasses, Mater. Lett. 2014, 126, 278–280[WoS]
  • [6] Fredholm Y.C., Karpukhina N., Law R.V., Hill R.G., Strontiumcontainingbioactive glasses: Glass structure and physical properties,J. Non-Cryst. Solids. 2010, 356, 2546–2551[WoS]
  • [7] Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N.,O’Donnell M.D., Hill R.G., et al., The effects of strontiumsubstitutedbioactive glasses on osteoblasts and osteoclasts invitro, Biomaterials 2010, 31, 3949–3956[Crossref][WoS]
  • [8] Al-Noaman A., Rawlinson S.C.F., Hill R.G., The role of MgO onthermal properties, structure and bioactivity of bioactive glasscoating for dental implants, J. Non-Cryst. Solids. 2012, 358,3019–3027
  • [9] Mneimne M., Hill R.G., Bushby A.J., Brauer D.S., High phosphatecontent significantly increases apatite formation of fluoridecontainingbioactive glasses, Acta Biomater. 2011, 7, 1827–1834[WoS][Crossref]
  • [10] Lusvardi G., Malavasi G., Menabue L., Aina V., Morterra C.,Fluoride-containing bioactive glasses: Surface reactivity in simulatedbody fluids solutions, Acta Biomater. 2009, 5, 3548–3562[WoS][Crossref]
  • [11] Montazeri N., Jahandideh R., Biazar E., Synthesis offluorapatite-hydroxyapatite nanoparticles and toxicity investigations,Int. J. Nanomedicine 2011, 6, 197–201[WoS]
  • [12] Wang C.J., Zhang Y.F., Wei J., Wei S.C., Effects of DifferentpH Conditions on Enamel Erosion Repair by Nano FluorapatitePastes, J. Nanosci. Nanotechnol. 2012, 12, 7346–7353[WoS]
  • [13] Featherstone J.D.B., The science and practice of caries prevention,J. Am. Dent. Assoc. 2000, 131, 887–899
  • [14] Brauer D.S., Mneimne M., Hill R.G., Fluoride-containing bioactiveglasses: Fluoride loss during melting and ion release in trisbuffer solution, J. Non-Cryst. Solids. 2011, 357, 3328–3333[WoS]
  • [15] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., KarpukhinaN., Novel alkali free bioactive fluorapatite glass ceramics, J.Non-Cryst. Solids. 2014, 402, 172–177[WoS]
  • [16] Jabbarifar S.E., Salavati S., Akhavan A., Khosravi K., TavakoliN., Nilchian F., Effect of fluoridated dentifrices on surface microhardnessof the enamel of deciduous teeth, Dent. Res. J. (Isfahan)2011, 8, 113–117
  • [17] Kiprianov A.A., Karpukhina N.G., Oxyhalide silicate glasses,Glass Phys. Chem 2006, 32, 1–27[Crossref]
  • [18] Chen X., Hill R., Karpukhina N., Chlorapatite Glass-Ceramics,Int. J. Appl. Glass Sci. 2014, 5, 207–216[Crossref]
  • [19] Brauer D.S., Al-Noaman A., Hill R.G., Doweidar H., Densitystructurecorrelations in fluoride-containing bioactive glasses,Mater. Chem. Phys. 2011, 130, 121–125[Crossref][WoS]
  • [20] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G.,Fluoride-containing bioactive glasses: Effect of glass designand structure on degradation, pH and apatite formation in simulatedbody fluid, Acta Biomater. 2010, 6, 3275–3282[Crossref]
  • [21] Hill R.G., Law R.V., O’Donnell M.D., Hawes J., Bubb N.L., WoodD.J., et al., Characterisation of fluorine containing glasses andglass-ceramics by 19F magic angle spinning nuclear magneticresonance spectroscopy, J. Eur. Ceram. Soc. 2009, 29, 2185–2191[WoS][Crossref]
  • [22] Sandland T.O., Du L.S., Stebbins F., Webster J.D., Structure ofCl-containing silicate and aluminosilicate glasses: A Cl-35 MASNMRstudy, Geochim. Cosmochim. Acta 2004, 68, 5059–5069[Crossref]
  • [23] Hill R.G., Brauer D.S., Predicting the glass transition temperatureof bioactive glasses from their molecular chemical composition,Acta Biomater. 2011, 7, 3601–3605[Crossref]
  • [24] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., KarpukhinaN., Novel alkali free bioactive fluorapatite glass ceramics, J. Nocryst.Solids 2014, 402, 172–177[WoS]
  • [25] Farooq I., Tylkowski M., Muller S., Janicki T., Brauer D.S., HillR.G., Influence of sodiumcontent on the properties of bioactiveglasses for use in air abrasion, Biomed. Mater. 2013, 8,[Crossref]
  • [26] Smedskjaer M.M., Jensen M., Yue Y., Effect of thermal historyand chemical composition on hardness of silicate glasses, J.Non-Cryst. Solids. 2010, 356, 893–897[WoS]
  • [27] Ananthakrishna S., Raghu T., Koshy S., Kumar N. Clinical evaluationof the eflcacy of bioactive glass and strontium chloride fortreatment of dentinal hypersensitivity, J. Interdiscip Dentistry.2012, 2, 92–97
  • [28] Hench L.L., Bioceramics, J. Am. Ceram. Soc. 1998, 81, 1705–1728[Crossref]
  • [29] Hench L.L., Bioceramics - from concept to clinic, J. Am. Ceram.Soc. 1991, 74, 1487–1510[Crossref]
  • [30] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., KarpukhinaN., Bioactivity of Sodium Free Fluoride Containing Glasses andGlass-Ceramics, Materials 2014, 7, 5470–5487[Crossref]
  • [31] Elliott J.C., Young R.A., Conversion of Single Crystals of Chlorapatiteinto Single Crystals of Hydroxyapatite, Nature 1967, 214,904–906
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.