Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 1 | 1 |
Tytuł artykułu

Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ion release of Mg- and Zn-substituted Bioglass 45S5 (46.1 SiO2-2.6 P2O5-26.9 CaO-24.3Na2O; mol%; with 0, 25, 50, 75 or 100% of calcium replaced bymagnesium/zinc) was investigated at pH 7.4 (Tris buffer) and pH 4 (acetic acid/sodium acetate buffer) in static and dynamic dissolution experiments. Despite Mg2+ and Zn2+ having the same charge and comparable ionic radii, they influenced the dissolution behaviour in very different ways. In Tris, Mgsubstituted glasses showed similar ion release as 45S5, while Zn-substituted glasses showed negligible ion release. At low pH, however, release behaviour was similar, with all glasses releasing large percentages of ions within a few minutes. Precipitation of crystalline phases also varied, as Mg- and Zn-substitution inhibited apatite formation, and Zn-substitution resulted in formation of zinc phosphate phases at low pH. These results are relevant for glasses used in aluminium-free glass ionomer bone cements, as they show that Zn/Mg-substituted glasses release ions similarly fast as glasses containing no Zn/Mg, suggesting that these ions are no prerequisite for ionomer glasses. Zn-substituted glasses may potentially be used as controlled-release materials, which release antibacterial zinc ions when needed only, i.e. at low pH conditions (e.g. bacterial infection), but not at normal physiological pH conditions.
Wydawca

Czasopismo
Rocznik
Tom
1
Numer
1
Opis fizyczny
Daty
otrzymano
2015-05-04
zaakceptowano
2015-08-14
online
2015-09-14
Twórcy
  • Otto Schott Institute of Materials Research,
    Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena,
    Germany
autor
  • Johan Gadolin Process Chemistry Centre, Åbo
    Akademi University, Piispankatu 8, 20500 Turku, Finland
  • Otto Schott Institute of Materials Research,
    Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena,
    Germany
Bibliografia
  • ---
  • [1] Wilson A.D., Prosser H.J., Powis D.M., Mechanism of adhesionof poly-electrolyte cements to hydroxyapatite, J Dent Res 1983,62, 590–592.[Crossref]
  • [2] De Barra E., Grifln S., Henn G., Hill R., Devlin J., Johal K. etal., The mechanism of fluoride release from glass (ionomer)polyalkenoate cements, J Dent Res 1995, 74, 833–833.
  • [3] Brauer D.S., Karpukhina N., Kedia G., Bhat A., LawR.V., RadeckaI. et al., Bactericidal strontium-releasing injectable bone cementsbased on bioactive glasses, J Roy Soc Interface 2013, 10,20120647.[Crossref]
  • [4] Blades M.C., Moore D.P., Revell P.A., Hill R., in vivo skeletalresponse and biomechanical assessment of two novelpolyalkenoate cements following femoral implantation in the femaleNew Zealand White rabbit, J Mater Sci-Mater M 1998, 9,701–706.[Crossref]
  • [5] Boyd D., Clarkin O.M.,Wren A.W., Towler M.R., Zinc-based glasspolyalkenoate cements with improved setting times and mechanicalproperties, Acta Biomater 2008, 4, 425–431.[Crossref]
  • [6] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G.,Benefits and drawbacks of zinc in glass ionomer bone cements,Biomed Mater 2011, 6, 045007.[Crossref]
  • [7] Shannon R.D., Revised effective ionic radii and systematic studiesof interatomic distances in halides and chalcogenides, ActaCryst 1976, A32, 751–767.[Crossref]
  • [8] Balasubramanian P., Strobel L.A., Kneser U., Boccaccini A.R.,Zinc-containing bioactive glasses for bone regeneration, dentaland orthopedic applications, Biomedical Glasses 2015, 1, 51–69.
  • [9] Diba M., Tapia F., Boccaccini A.R., Strobel L.A., Magnesiumcontainingbioactive glasses for biomedical applications, Int J Appl Glass Sci 2012, 3, 221–253.[Crossref]
  • [10] Underwood E.J., Trace elements in human and animal nutrition.Academic Press, New York, 1971 1971.
  • [11] Hsieh H.S., Navia J.M., Zinc-deficiency and bone-formation inguinea-pig alveolar implants, Journal of Nutrition 1980, 110,1581–1588.
  • [12] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency onserum somatomedin levels and skeletal growth in young rats,Endocrinology 1984, 114, 1860–1863.
  • [13] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E.,Agren M.S., Zinc in wound healing: Theoretical, experimental,and clinical aspects, Wound Repair Regen 2007, 15, 2–16.[Crossref]
  • [14] Prasad A.S., Clinical manifestations of zinc-deficiency, AnnuRev Nutr 1985, 5, 341–365.[Crossref]
  • [15] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc onbone formation in tissue culture, Biochem Pharmacol 1987, 36,4007–4012.[Crossref]
  • [16] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolismin rats - Increases in alkaline phosphatase activity and DNA content,Biochem Pharmacol 1986, 35, 773–777.[Crossref]
  • [17] Holloway W.R., Collier F.M., Herbst R.E., Hodge J.M., NicholsonG.C., Osteoblast-mediated effects of zinc on isolated rat osteoclasts:Inhibition of bone resorption and enhancement of osteoclastnumber, Bone 1996, 19, 137–142.[Crossref]
  • [18] Elliott J.C., Structure and chemistry of the apatites and other calciumorthophosphates, 1st ed. Elsevier, Amsterdam, New York,London, Tokyo, 1994 1994.
  • [19] Aaseth J., Boivin G., Andersen O., Osteoporosis and trace elements– An overview, J Trace Elem Med Bio 2012, 26, 149–152.[Crossref]
  • [20] FawcettW.J., Haxby E.J.,Male D.A.,Magnesium: physiology andpharmacology, Brit J Anaesth 1999, 83, 302–320.
  • [21] Cannillo V., Pierli F., Ronchetti I., Siligardi C., Zaffe D., Chemicaldurability and microstructural analysis of glasses soaked inwater and in biological fluids, Ceram Int 2009, 35, 2853–2869.[Crossref]
  • [22] Punnia-Moorthy A., Evaluation of pH changes in inflammationof the subcutaneous air pouch lining in the rat, induced bycarrageenan, dextran and staphylococcus aureus, J Oral PatholMed 1987, 16, 36-44.[Crossref]
  • [23] Bingel L., Groh D., Karpukhina N., Brauer D.S., Influence of dissolutionmedium pH on ion release and apatite formation ofBioglassr 45S5, Mater Lett 2015, 143, 279–282.
  • [24] Shah F.A., Brauer D.S., Desai N., Hill R.G., Hing K.A., Fluoridecontainingbioactive glasses and Bioglassr 45S5 form apatitein low pH cell culture medium, Mater Lett 2014, 119, 96–99.
  • [25] Jones J.R., Review of bioactive glass: From Hench to hybrids,Acta Biomater 2013, 9, 4457–4486.[Crossref]
  • [26] Brauer D.S., Bioactive glasses-structure and properties,Angew Chem Int Edit 2015, 54, 4160-4181 and Angew Chem GerEd 2015, 127, 4232–4254.[Crossref]
  • [27] Miller C., Hatton P.V., Mirvakily F., inventors; The University ofShefleld, assignee. A novel glass-ionomer cement. UK patentWO 2014/102538 A1. 3 July 2014.
  • [28] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses usingthe network connectivity or split network models, J Non-CrystSolids 2011, 357, 3884–3887.
  • [29] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatibleglasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer, Acta Biomater 2013, 9, 5400–5410.
  • [30] Fagerlund S., Ek P., Hupa M., Hupa L., On determining chemicaldurability of glasses, Glass Technol 2010, 51, 235–240.
  • [31] Fagerlund S., Ek P., Hupa L., Hupa M., Dissolution kinetics of abioactive glass by continuous measurement, J Am Ceram Soc2012, 95, 3130–3137.
  • [32] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behaviorof bioactive glass dissolution, J Biomed Mater Res 2001, 58,720–726.
  • [33] Aina V., Bertinetti L., Cerrato G., Cerruti M., Lusvardi G.,Malavasi G. et al., On the dissolution/reaction of small-grainBioglass 45S5 and F-modified bioactive glasses in artificialsaliva (AS), Applied Surface Science 2011, 257, 4185–4195.
  • [34] Wilson A.D., A hard decade’s work: Steps in the invention of theglass-ionomer cement, J Dent Res 1996, 75, 1723–1727.[Crossref]
  • [35] Dietzel A., Structural chemistry of glass, Naturwissenschaften1941, 29, 537–547.[Crossref]
  • [36] Neuville D.R., Cormier L.,Massiot D., Al coordination and speciationin calciumaluminosilicate glasses: Effects of compositiondetermined by Al-27 MQ-MAS NMR and Raman spectroscopy,Chem Geol 2006, 229, 173–185.
  • [37] Grifln S.G., Hill R.G., Influence of glass composition on theproperties of glass polyalkenoate cements. Part I: Influence ofaluminium to silicon ratio, Biomaterials 1999, 20, 1579–1586.[Crossref]
  • [38] Watts S.J., O’Donnell M.D., Law R.V., Hill R.G., Influence of magnesiaon the structure and properties of bioactive glasses, JNon-Cryst Solids 2010, 356, 517–524.
  • [39] Pedone A., Malavasi G., Menziani M.C., Computational insightinto the effect of CaO/MgO substitution on the structural propertiesof phospho-silicate bioactive glasses, J Phys Chem C2009, 113, 15723–15730.
  • [40] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Segre U.,Carnasciali M.M. et al., A combined experimental and computationalapproach to (Na2O)1−x·CaO·(ZnO)x·2SiO2 glasses characterization,J Non-Cryst Solids 2004, 345, 710–714.
  • [41] Linati L., Lusvardi G., Malavasi G., Menabue L., Menziani M.C.,Mustarelli P. et al., Qualitative and quantitative structurepropertyrelationship analysis ofmulticomponent potential bioglasses,J Phys Chem B 2005, 109, 4989–4998.
  • [42] Aina V., Malavasi G., Pla A.F., Munaron L., Morterra C., Zinccontainingbioactive glasses: Surface reactivity and behaviourtowards endothelial cells, Acta Biomater 2009, 5, 1211–1222.[Crossref]
  • [43] Tilocca A., Cormack A.N., Modeling the water-bioglass interfaceby ab initio molecular dynamics simulations, ACS Appl MaterInter 2009, 1, 1324–1333.
  • [44] Tilocca A., Cormack A.N., The initial stages of bioglass dissolution:a Car-Parrinello molecular-dynamics study of the glasswaterinterface, P Roy Soc A-Math Phy 2011, 467, 2102–2111.
  • [45] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M.,McKay I.J. et al., ‘Smart’ acid-degradable zinc-releasing silicateglasses, Mater Lett 2014, 126, 278–280.
  • [46] Shah F.A., Brauer D.S., Wilson R.M., Hill R.G., Hing K.A., Influenceof cell culture medium composition on in vitro dissolutionbehavior of a fluoride-containing bioactive glass, J BiomedMater Res A 2014, 102, 647–654.
  • [47] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G.,Fluoride-containing bioactive glasses: Effect of glass designand structure on degradation, pH and apatite formation in simulatedbody fluid, Acta Biomater 2010, 6, 3275–3282.[Crossref]
  • [48] Mayer I., Schlam R., Featherstone J.D.B., Magnesiumcontainingcarbonate apatites, J Inorg Biochem 1997, 66,1–6.
  • [49] Mayer I., Apfelbaum F., Featherstone J.D.B., Zinc ions in syntheticcarbonated hydroxyapatites, Arch Oral Biol 1994, 39, 87–90.[Crossref]
  • [50] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitoryeffect of magnesium and zinc on crystallization kinetics of hydroxyapatite(0001) face, J Phys Chem B 2000, 104, 4189–4194.
  • [51] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L.,Morterra C. et al., Cytotoxicity of zinc-containing bioactiveglasses in contact with human osteoblasts, Chem-Biol Interact2007, 167, 207–218.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1515_bglass-2015-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.