Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 4 | 1 | 30-41
Tytuł artykułu

Spin-dependent transport through magnetic nanojunctions

Treść / Zawartość
Warianty tytułu
Języki publikacji
Coherent electronic transport through a molecular device is studied using non-equilibrium Green's function (NEGF) formalism. Such device is made of atomic nanowire which is connected to ferromagnetic electrodes. The molecule itself is described with the help of Hubbard model (Coulomb interactions are treated by means of the Hartree-Fock approximation), while the coupling to the electrodes is modeled through the use of a broad-band theory. It was shown that magnetoresistance varies periodically with increasing length of the atomic wire (in the linear response regime) and oscillates with increasing bias voltage (in the nonlinear response regime). Since the TMR effect for analyzed structures is predicted to be large (tens of percent), these junctions seem to be suitable for application as magnetoresistive elements in future electronic circuits.

Opis fizyczny
  • Departamento de Teoria de la Materia Condensada, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049, Madrid, Spain
  • [1] R.M. Metzger: “Electrical rectification by a molecule: the advent of unimolecular electronic devices”, Acc. Chem. Res., Vol. 32, (1999), pp. 950–957.[Crossref]
  • [2] J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour: “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, Vol. 286, (1999), pp. 1550–1552.[Crossref]
  • [3] M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour: “Molecular random access memory cell”, Appl. Phys. Lett., Vol. 78, (2001), pp. 3735–3737.[Crossref]
  • [4] J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruńa, P.L. McEuen, and D.C. Ralph: “Coulomb blockade and the Kondo effect in single-atom transistor”, Nature (London), Vol. 417, (2002), pp. 722–725.[Crossref]
  • [5] G.A. Prinz: “Magnetoelectronics”, Science, Vol. 282, (1998), pp. 1660–1663.[Crossref]
  • [6] I. Žutić, J. Fabian, and S. Das Sarma: “Spintronics: Fundamentals and Applications”, Rev. Mod. Phys., Vol. 76, (2004), pp. 323–411.[Crossref]
  • [7] N. Garcia, M. Munoz, and Y.-W. Zhao: “Magnetoresistance in excess of 200 % in Ballistic Ni Nanocontacts at Room Temperature and 100 Oe“, Phys. Rev. Lett., Vol. 82, (1999), pp. 2923–2926.[Crossref]
  • [8] H. Imamura, N. Kobayashi, S. Takahashi, and S. Maekawa: “Conductance Quantization and Magnetoresistance in Magnetic Point Contacts”, Phys. Rev. Lett., Vol. 84, (2000), pp. 1003–1006.[Crossref]
  • [9] E.G. Emberly, and G. Kirczenow: “Molecular spintronics: spin-dependent molecular transport in molecular wires”, Chem. Phys., Vol. 281, (2002), pp. 311–324.[Crossref]
  • [10] M. Zwolak, and M. Di Ventra: “DNA Spintronics”, Appl. Phys. Lett., Vol. 81, (2002), pp. 925–927.[Crossref]
  • [11] W.I. Babiaczyk, and B.R. Bułka: “Coherent electronic transport through single molecules: Negative differential resistance and magnetoresistance effects”, Phys. Stat. Sol. (a), Vol. 196, (2003), pp. 169–172.[Crossref]
  • [12] W.I. Babiaczyk, and B.R. Bułka: “Electronic transport in molecular systems with para-and ferromagnetic leads”, J. Phys.: Condens. Matter, Vol. 16, (2004), pp. 4001–4012.[Crossref]
  • [13] K. Walczak: “Nonlinear transport through a finite Hubbard chain connected to the electrodes”, Physica B, Vol. 365, (2005), pp. 193–200.[Crossref]
  • [14] J.R. Petta, S.K. Slater, and D.C. Ralph: “Spin-Dependent Transport in Molecular Tunnel Junctions”, Phys. Rev. Lett., Vol. 93, (2004), pp. 136601.[Crossref]
  • [15] G. Roth, and H. Fischer: “On the Way to Heptahexaenylidene Complexes: Trapping of an Intermediate with the Novel M=C=C=C=C=C=C=CR2 Moiety”, Organometallics, Vol. 15, (1996), pp. 5766–5768.
  • [16] N.D. Lang, and Ph. Avouris: “Oscillatory Conductance of Carbon-Atom Wires”, Phys. Rev. Lett., Vol. 81, (1998), pp. 3515–3518.[Crossref]
  • [17] N.D. Lang, and Ph. Avouris: “Carbon-Atom Wires: Charge-Transfer Doping, Voltage Drop, and the Effect of Distortions”, Phys. Rev. Lett., Vol. 84, (2000), pp. 358–361.[Crossref]
  • [18] K. Raghavachari, and J.S. Binkley: “Structure, stability, and fragmentation of small carbon clusters”, J. Chem. Phys., Vol. 87, (1987), pp. 2191–2197.[Crossref]
  • [19] L. Lou, and P. Nordlander: “Carbon atomic chains in strong electric fields”, Phys. Rev. B, Vol. 54, (1996), pp. 16659–16662.[Crossref]
  • [20] V. Mujica, M. Kemp, A. Roitberg, and M. Ratner: “Current-voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification”, J. Chem. Phys., Vol. 104, (1996), pp. 7296–7305.[Crossref]
  • [21] T. Kostyrko, and B. R. Bułka: “Hubbard model approach for the transport properties of short molecular chains”, Phys. Rev. B, Vol. 67, (2003), pp. 205331.[Crossref]
  • [22] W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: “Conductance spectra of molecular wires”, J. Chem. Phys., Vol. 109, (1998), pp. 2874–2882.[Crossref]
  • [23] H. Haug, and A.-P. Jauho: “Quantum Kinetics in Transport and Optics of Semiconductors”, Springer-Verlag, Berlin, 1998.
  • [24] S.T. Pantelides, M. Di Ventra, and N.D. Lang: „Molecular electronics by the numbers“, Physica B, Vol. 296, (2001), pp. 72–77.[Crossref]
  • [25] A. Di Carlo, M. Gheorghe, P. Lugli, M. Sternberg, G. Seifert, and T. Frauenheim: „Theoretical tools for transport in molecular nanostructures“, Physica B, Vol. 314, (2002), pp. 86–90.[Crossref]
  • [26] I.I. Mazin: “How to Define and Calculate the Degree of Spin Polarization in Ferro-magnets”, Phys. Rev. Lett., Vol. 83, (1999), pp. 1427–1430.[Crossref]
  • [27] Y. Meir, and N.S. Wingreen: “Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett., Vol. 68, (1992), pp. 2512–2515.[Crossref]
  • [28] A. Oguri: „Transmission probability through small interacting systems: application to a series of quantum dots“, Physica E, Vol. 18, (2003), pp. 81–82. [Crossref]
  • [29] P.F. Bagwell, and T.P. Orlando: “Landauer's conductance formula and its generalization to finite voltages”, Phys. Rev. B, Vol. 40, (1989), pp. 1456–1464.[Crossref]
  • [30] W. Tian, and S. Datta: “Aharonov-Bohm-type Effect in grapheme tubules: A Landauer approach”, Phys. Rev. B, Vol. 49, (1994), pp. 5097–5100.[Crossref]
  • [31] M. Magoga, and C. Joachim: “Conductance and transparence of long molecular wires”, Phys. Rev. B, Vol. 56, (1997), pp. 4722–4729.[Crossref]
  • [32] M. Magoga, and C. Joachim: “Minimal attenuation for tunneling through a molecular wire”, Phys. Rev. B, Vol. 57, (1998), pp. 1820–1823.[Crossref]
  • [33] M. Di Ventra, S.T. Pantelides, and N.D. Lang: “First-Principles Calculation of Transport Properties of a Molecular Device”, Phys. Rev. Lett., Vol. 84, (2000), pp. 979–982.[Crossref]
  • [34] M. Di Ventra, N.D. Lang, and S.T. Pantelides: “Electronic transport in single molecules”, Chem. Phys., Vol. 281, (2002), pp. 189–198.[Crossref]
  • [35] P.W. Anderson, D.J. Thouless, E. Abrahams, and D.S. Fisher: “New method for a scaling theory of localization”, Phys. Rev. B, Vol. 22, (1980), pp. 3519–3526.[Crossref]
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.