PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 4 | 1 | 135-148
Tytuł artykułu

Improved QSAR modeling of anti-HIV-1 acivities by means of the optimized correlation weights of local graph invariants

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report the results derived from the use of molecular descriptors calculated with the correlation weights (CWs) of local graph invariants for modeling of anti-HIV-1 potencies of two groups of reverse transcriptase inhibitors. The presence of different chemical elements in the molecular structure of the inhibitors and the Morgan extended connectivity values of zeroth-, first-, and second order have been examined as local graph invariants in the labeled hydrogen-filled graphs. We have computed via Monte Carlo optimization procedure the values of CWs which produce the largest possible correlation coefficient between the numerical data on the anti-HIV-1 potencies and those values of the descriptors on the training set. The model of the anti-HIV-1 activity obtained with compounds of training set by means of optimization of correlation weights of chemical elements present together with Morgan extended connectivity of first order makes up a sensible model for a satisfactory prediction of the endpoints of the compounds belonging to the test set.
Wydawca

Czasopismo
Rocznik
Tom
4
Numer
1
Strony
135-148
Opis fizyczny
Daty
wydano
2006-03-01
online
2006-03-01
Twórcy
  • CIMA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata, 1900, Buenos Aires, Argentina
  • INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Suc.4, C.C. 16, La Plata, 1900, Argentina, castro@quimica.unlp.edu.ar
  • Scientifical Research Institute “Algorithm-Engineering”, F. Khodjaev Street 25, 700125, Tashkent, Uzbekistan
Bibliografia
  • [1] A.F. Jalbout and X. Li: “Anti-HIV-1 inhibitors of various molecules using principles of connectivity”, J. Mol. Struct. (Theochem), Vol. 663, (2003), pp. 19–23. http://dx.doi.org/10.1016/S0166-1280(03)00475-5[Crossref]
  • [2] H. Yuan and A.L. Parrill: “QSAR Develpment to describe HIV-1 integrase inhibition”, J. Mol. Struct. (Theochem), Vol. 529, (2000), pp. 273–282. http://dx.doi.org/10.1016/S0166-1280(00)00553-4[Crossref]
  • [3] V.P. Solov'ev and A. Varnek: “Anti-HIV activity of HEPT, TIBO, and cyclic urea derivatives: Structure-property studies, focused combinatorial library generation, and hits selection using substructural molecular fragments method”, J. Chem. Inf. Comput. Sci., Vol. 43, (2003), pp. 1703–1719. http://dx.doi.org/10.1021/ci020388c[Crossref]
  • [4] M.T. Makhija and V.M. Kulkarni: “Eigen value Analysis of HIV-1 integrase inhibitors”, J. Chem. Inf. Comput. Sci., Vol. 41, (2001), pp. 1569–1577. http://dx.doi.org/10.1021/ci0001334[Crossref]
  • [5] SciFinder Scholar, version 2000.1, American Chemical Society, Washington, DC, 2000, http://www.cas.org/SCIFINDER/SCHOLAR/index.html.
  • [6] R. Garg, S.P. Gupta, H. Gao, M.S. Babu, A.K. Debnath and C. Hansch: “Comparative Quantitative Structure-Activity Relationship studies on anti-HIV drugs”, Chem. Rev., Vol. 99, (1999), pp. 3525–3602. http://dx.doi.org/10.1021/cr9703358[Crossref]
  • [7] M. Jalali-Heravi and F. Parastar: “Use of artificial neural networks in a QSAR study of anti-HIV activity for a large group of HEPT derivatives”, J. Chem. Inf. Comput. Sci., Vol. 40, (2000), pp. 147–154. http://dx.doi.org/10.1021/ci990314+[Crossref]
  • [8] M.H. Knaggs, C. McGuigan, S.A. Harris, P. Heshmati, D. Cahard, I.H. Gilbert and J. Balzarini: “A QSAR study investigating the effect of L-Alanine ster variation on the anti-HIV activity of some phosphoramidate derivatives of d4T”, Bioorg. Med. Chem. Lett. Vol. 10, (2000), pp. 2075–2078. http://dx.doi.org/10.1016/S0960-894X(00)00397-8[Crossref]
  • [9] J.M.J. Tronchet, M. Grigorov, N. Dolatshahi, F. Moriaud and J.A. Weber: A QSAR study confirming the heterogeneity of the HEPT derivative series regarding their interaction with HIV reverse transcriptase”, Eur. J. Med. Chem., Vol. 32, (1997), pp. 279–299. http://dx.doi.org/10.1016/S0223-5234(97)89081-2[Crossref]
  • [10] J. Houskonen: “QSAR Modeling with the electrotopological state: TIBO derivatives”, J. Chem. Inf. Comput. Sci., Vol. 41, (2001), pp. 425–429. http://dx.doi.org/10.1021/ci0001435[Crossref]
  • [11] H.H. Maw and L.H. Hall: “E-State Modeling of HIV-1 protease inhibitor binding independent of 3D information”, J. Chem. Inf. Comput. Sci., Vol. 42, (2002), pp. 190–298. http://dx.doi.org/10.1021/ci010091z[Crossref]
  • [12] E. Gancia, G. Bravi, P. Mascagni and A. Zaliani: “Global 3D-QSAR Methods:MS-WHIM and autocorrelation”, J. Comput. Aid. Mol. Des., Vol. 14, (2000)pp.293–306. http://dx.doi.org/10.1023/A:1008142124682[Crossref]
  • [13] C.T. Klein, L. Lawtrakul, S. Hannongbua and P. Wolschann: “Accessible charges in Structure-Activity Relationships. A study on HEPT-Based HIV-1 RT inhibitors”, Sci. Pharm., Vol. 68, (2000), pp. 25–40.
  • [14] O.A. Santos-Filho and A.J. Hopfinger: “The 4D-QSAR paradigm: Application to a novel set of nonpetidic HIV protease inhibitors”, Quant. Struct.-Act. Rel., Vol. 21, (2002), pp. 369–381. http://dx.doi.org/10.1002/1521-3838(200210)21:4<369::AID-QSAR369>3.0.CO;2-1[Crossref]
  • [15] D.B. Kireev, J.R. Chretien and O.A. Raevsky: “Molecular Modeling and Quantitative Structure-Activity studies of anti-HIV-1,2-heteroarylquinoline-4-amines”, Eur. J. Med. Chem., Vol. 30, (1995), pp. 395–402. http://dx.doi.org/10.1016/0223-5234(96)88249-3[Crossref]
  • [16] S. Hennongbua, K. Nivesanond, L. Lawtrakul, P. Pungpo and P. Wolschann: “3D-Quantitative Structure-Activity Relationships of HEPT derivatives as HIV-1 reverse transcriptase inhibitors, based on ab initio calculations”, Chem. Inf. Comput. Sci., Vol. 41, (2001), pp. 848–855. http://dx.doi.org/10.1021/ci0001278[Crossref]
  • [17] P.R.N. Jayatilleke, A.C. Nair, R. Zauhar and W.J. Welsh: “Computational studies on HIV-1 protease inhibitors: Influence of calculated inhibitor-enzyme binding affinities on the statistical quality of 3D-QSAR CoMFA models”, J. Med. Chem., Vol. 43, (2000), pp. 4446–4451. http://dx.doi.org/10.1021/jm9905357[Crossref]
  • [18] A.K. Debnath: “Three-dimensional Quantitative Structure-Activity Relationships study on cyclic urea derivatives as HIV-1 protease inhibitors: Application to comparative molecular field analysis”, J. Med. Chem., Vol. 42, (1999), pp. 249–259. http://dx.doi.org/10.1021/jm980369n[Crossref]
  • [19] J.K. Buolamwini and H. Assefa: “CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: Exploration of a binding mode at the active site”, J. Med. Chem., Vol. 45, (2002), pp. 841–852. http://dx.doi.org/10.1021/jm010399h[Crossref]
  • [20] T. Mickle and V. Nair: “Anti-human immunodeficiency virus activities of nucleosides and nucleotides: Correlation with molecular electrostatic potential data”, Antimicrob. Agents Ch. Vol. 44, (2000), pp. 2939–2947. http://dx.doi.org/10.1128/AAC.44.11.2939-2947.2000[Crossref]
  • [21] T. Mickel and V. Nair: “Predictive QSAR analysis of anti-HIV agents”, Drugs Future, Vol. 25, (2000), pp. 393–400. http://dx.doi.org/10.1358/dof.2000.025.04.858668[Crossref]
  • [22] O.G. Gonzáles, J.S. Murray, Z. Peralta-Inga and P. Politzer: “Computed molecular surface electrostatic potentials of two groups of riverse transcriptase inhibitors: Relationships to anti-HIV-1 activities”, Int. J. Quantum Chem. Vol. 83, (2001), pp. 115–124. http://dx.doi.org/10.1002/qua.1203[Crossref]
  • [23] M. Firpo, L. Gavernet, E.A. Castro and A.A. Toropov: “Maximum topological distances based indices as molecular descriptors for QSPR. Part 1. Application to alkyl benzenes boiling points”, J. Mol. Struct. (Theochem), Vols. 501-502, (2000), pp. 419–425. http://dx.doi.org/10.1016/S0166-1280(99)00453-4[Crossref]
  • [24] E.A. Castro, M. Tueros and A.A. Toropov: “Maximum topological distances based indices as molecular descriptor for QSPR. 2 - Application to aromatic hydrocarbons, Computers and Chemistry, Vol. 24, (2000) pp. 571–576. http://dx.doi.org/10.1016/S0097-8485(99)00095-9[Crossref]
  • [25] A. Mercader, E.A. Castro and A.A. Toropov: “Maximum topological distances based indices as molecular descriptors for QSPR. 4 - Modeling the enthalpy of formation of hydrocarbons from elements”, Int. J. Mol. Sci., Vol. 2, (2001), pp. 121–134. [Crossref]
  • [26] A. Toropov, A. Toropova, T. Ismailov and D. Bonchev:“3D weighting of molecular descriptors for QSPR/QSAR by the Method of Ideal Symmetry (MIS). 1. Application to boiling points of alkanes”, J. Mol. Struct. (Theochem), Vol. 424, (1998), pp. 237–247. http://dx.doi.org/10.1016/S0166-1280(97)00151-6[Crossref]
  • [27] G. Krenkel, E.A. Castro and A.A. Toropov: “3D and 4D Molecular models derived from the ideal symmetry method: Prediction of alkanes normal boiling points”, Chem. Phys. Lett., Vol. 355, (2002), pp. 517–528. http://dx.doi.org/10.1016/S0009-2614(02)00292-0[Crossref]
  • [28] A.A. Toropov and A.P. Toropova: “Method of ideal symmetry in four-dimensional space: Implementation in the QSPR studies on the thermochemistry of complex compounds”, Russ. J. Coord. Chem., Vol. 23, (1997), pp. 741–747.
  • [29] A.A. Toropov and A.P. Toropova: “Optimization of correlation weights of the local graph invariants: Use of the enthalpies of formation of complex compounds for the QSPR modeling”, Russ. J. Coord. Chem., Vol. 24, (1998), pp. 81–85.
  • [30] A.A. Toropov and A.P. Toropova: “QSPR Modeling of stability of complexes of adenosine phosphate derivatives with metals absent from the complexes of the teaching access”, Russ. J. Coord. Chem., Vol. 27, (2001), pp. 574–578. http://dx.doi.org/10.1023/A:1011305912728[Crossref]
  • [31] A.A. Toropov and A.P. Toropova: “Modeling of acyclic compounds normal boiling points by correlation weighting of nearest neighboring codes”, J. Mol. Struct. (Theochem) Vol. 581, (2002), pp. 11–15. http://dx.doi.org/10.1016/S0166-1280(01)00733-3[Crossref]
  • [32] A.A. Toropov and A.P. Toropova: “Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graph of local invariants”, J. Mol. Struct. (Theochem), Vol. 538, (2001), pp. 287–293. http://dx.doi.org/10.1016/S0166-1280(00)00713-2[Crossref]
  • [33] A.A. Toropov and A.P. Toropova: “QSAR Modeling of mutagenicity based on graph of atomic orbitals”, Internet Electron. J. Mol. Des, Vol. 1, (2002), pp. 109–113, http://www.biochempress.com
  • [34] A.A. Toropov and A.P. Toropova: “QSAR Modeling of toxicity on optimization of correlation weights of Morgan extended connectivity”, J. Mol. Struct. (Theochem), Vol. 578, (2002) pp. 129–134. http://dx.doi.org/10.1016/S0166-1280(01)00695-9[Crossref]
  • [35] A.P. Toropova, A.A. Toropov, M.M. Ishankhodzhaeva and N.A. Parpiev: “QSPR Modeling of stability constants of coordination compounds by optimization of correlation weights of local Ggraph invariants”, Russ. J. Inorg. Chem., Vol. 45, (2000) pp. 1057–1059.
  • [36] G. Krenkel, E.A. Castro and A.A. Toropov: “Improved molecular descriptors to calculate boiling points based on the optimization of correlation weights of local graph invariants”, J. Mol. Struct. (Theochem) Vol. 542, (2001), pp. 107–113. http://dx.doi.org/10.1016/S0166-1280(00)00822-8[Crossref]
  • [37] G. Krenkel, E.A. Castro and A.A. Toropov: “Improved molecular descriptors based on the optimization of correlation weights of local graph invariants”, Int. J. Mol. Sci., Vol. 2, (2001), pp. 57–65. http://dx.doi.org/10.3390/i2020057[Crossref]
  • [38] A. Mercader, E.A. Castro and A.A. Toropov: “QSPR Modeling of the enthalpy of formation from elements by means of correlation weighting of local invariants of atomic orbital molecular graphs”, Chem. Phys. Lett., Vol. 330, (2000), pp. 612–623. http://dx.doi.org/10.1016/S0009-2614(00)01126-X[Crossref]
  • [39] P.R. Duchowicz, E.A. Castro and A.A. Toropov: “Improved QSPR analysis of standard entropy of acyclic and aromatic compounds using optimized correlation weights of linear graph invariants”, Computers & Chemistry, Vol. 26, (2002), pp. 327–332. http://dx.doi.org/10.1016/S0097-8485(01)00121-8[Crossref]
  • [40] P.J. Peruzzo, D.J.G. Marino, E.A. Castro and A.A. Toropov: “Calculation of pK values of flavylium salts from the optimization of correlation weights of local graph invariants”, J. Mol. Struct. (Theochem), Vol. 572, (2001), pp. 53–60. http://dx.doi.org/10.1016/S0166-1280(01)00559-0[Crossref]
  • [41] M. Randic: “On computation of optimal parameters for multivariate analysis of structure-property relationship”, J. Comput. Chem., Vol. 12, (1991), pp. 970–980. http://dx.doi.org/10.1002/jcc.540120810[Crossref]
  • [42] M. Randic: “Novel graph theoretic approach to heteroatoms in Quantitative Structure-Activity Relationships”, Chemom. Intell. Lab. Syst., Vol. 10, (1991), pp. 213–227. http://dx.doi.org/10.1016/0169-7439(91)80051-Q[Crossref]
  • [43] M. Randic: “Resolution of ambiguities in structure-property studies by use of orthogonal descriptors”, J. Chem. Inf. Comput. Sci., Vol. 31, (1991), pp. 311–320. http://dx.doi.org/10.1021/ci00002a018[Crossref]
  • [44] W. Ho, M.J. Kukla, H.J. Breslin, D.W. Ludovici, P.P. Grous, C.J. Diamond, M. Miranda, J.D. Rodgers, C.Y. Ho, E. De Clercq, R. Pauwels, K. Andries, M.A.C. Janssen and P.A.J. Janssen: “Synthesis and Anti-HIV-1 Activity of 4,5,6,7-Tetrahydro-5-methylimidazo [4,5,1-jk][1,4]benzodiazepin-2(1H)-one (TlBO) Derivatives”, J. Med. Chem. Vol. 38, (1995), p. 794 and earlier references cited. http://dx.doi.org/10.1021/jm00005a006[Crossref]
  • [45] M. Baba, S. Shigeta, H. Tanaka, T. Miyasaka, M. Ubasawa, K. Umezu, R.T. Walker, R. Pauwles and E. De Clerq: Antiviral Res., Vol. 17, (1992), p. 245. http://dx.doi.org/10.1016/0166-3542(92)90021-V[Crossref]
  • [46] A.A. Toropov, A.P. Toropova, N.L. Voropaeva, I.N. Ruban and S.Sh. Rashidova: “Generalized zero-order molecular connectivity index: Enthalpies of crystalline aquo and ammino complexes in QSPR modeling”, Russ. J. Coord. Chem., Vol. 24, (1988), pp.525–529.
  • [47] A.A. Toropov, N.L. Voropaeva, I.N. Ruban and S.Sh. Rashidova: “Quantitative Structure-Property Relationships for binary polymer solvent systems: Correlation weighting of the local invariants of molecular graphs”, Polym. Sci. Ser. A, Vol. 41, (1999), pp. 975–985.
  • [48] E.A. Castro, F. Torrens, A.A. Toropov, I.V. Nesterov and O.M. Nabiev: “QSAR Modeling of anti-HIV-1 activities by optimization of correlation weights of local graph invariants”, Mol. Simulat., Vol. 30, (2004), pp. 691–696. http://dx.doi.org/10.1080/08927020412331272449[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.-psjd-doi-10_1007_s11532-005-0010-0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.