Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
High intake of over-the-counter, non-steroidal anti-inflammatory drugs, such as ibuprofen, has resulted in their presence in wastewaters and surface waters. The potentially harmful effect of ibuprofen present in the waters has led to a search for new methods of drugs’ removal from the environment. One of the most important technological and economical solutions comprises microbiological degradation of these resistant pollutants. Searching for new strains able to degrade ibuprofen could be one of the answers for increasing the detection of pharmaceuticals in the waters. In this study, the ability of bacterial strain Bacillus thuringiensis B1(2015b) to remove ibuprofen is described. Bacteria were cultured in both monosubstrate and cometabolic systems with 1, 3, 5, 7 and 9 mg L-1 ibuprofen and 1 g L-1 glucose as a carbon source. Bacillus thuringiensis B1(2015b) removed ibuprofen up to 9 mg L-1 in 232 hours in the monosubstrate culture, whereas in the cometabolic culture the removal of the drug was over 6 times faster. That is why the examined strain could be used to enhance the bioremediation of ibuprofen.
PL
Wysokie spożycie niesteroidowych leków przeciwzapalnych, takich jak ibuprofen, skutkuje ich obecnością w ściekach i wodach powierzchniowych. Potencjalnie szkodliwy wpływ obecności ibuprofenu w wodach wymusza konieczność poszukiwania nowych metod usuwania leków ze środowiska. Jedną z najbardziej obiecujących, między innymi ze względu na niskie koszty, jest metoda mikrobiologicznego oczyszczania. Z tego względu poszukuje się mikroorganizmów o zwiększonych zdolnościach degradacyjnych ibuprofenu. Celem pracy było określenie zdolności szczepu Bacillus thuringiensis B1(2015b)do degradacji ibuprofenu. Hodowle bakterii prowadzono w układach mono- i disubstratowych z 1, 3, 5, 7 i 9 mg L-1 ibuprofenu oraz 1 g L-1 glukozy jako źródłem węgla w układach kometabolicznych. Wykazano, że szczep Bacillus thuringiensis B1(2015b) usuwa 9 mg L-1 ibuprofenu w 232 godziny w układzie monosubstratowym, podczas gdy w hodowli kometabolicznej całkowite usunięcie ibuprofenu zachodziło 6-krotnie szybciej. Otrzymane wyniki wskazują na możliwość zastosowania badanego szczepu w bioremediacji środowisk zanieczyszczonych ibuprofenem.
EN
Activated sludge method dominates among the currently used biological wastewater treatment systems. The dynamic development of this technology implies need for research, most of which are carried out in laboratory conditions. Biolog system seems to be an effective tool that allows a quick assessment of microbial activity of activated sludge. The aim of this study was to verify Biolog® EcoPlates’ usage for comparing the functional and metabolic diversity of activated and excess sludge microbial communities, collected from WWTP “Klimzowiec” in Chorzów with the excess sludge subjected to the purification process, and then long-term adaptation in laboratory conditions. Changes in the functional diversity of activated sludge during the adaptation in the lab-scale were verified. It was found that the acclimatization process plays a crucial role in sludge adaptation to the laboratory environment. In addition, it has been shown that subjecting the excess sludge to purification may lead to changes in functional diversity of this community.
PL
Wśród współcześnie stosowanych systemów biologicznego oczyszczania ścieków dominuje metoda osadu czynnego. Dynamiczny rozwój tej technologii implikuje konieczność prowadzenia badań naukowych, które w większości wykonywane są w warunkach laboratoryjnych. System BIOLOG wydaje się być skutecznym narzędziem, pozwalającym na szybką ocenę stanu aktywności mikroorganizmów osadu czynnego. Przedmiotem badań było zastosowanie płytek Biolog® EcoPlate do porównania funkcjonalnej różnorodności i aktywności metabolicznej zespołów mikroorganizmów, występujących w osadzie nadmiernym i osadzie czynnym, pobranym z Oczyszczalni Ścieków „Klimzowiec” w Chorzowie oraz w osadzie nadmiernym, poddanym procesowi oczyszczania, a następnie 7-tygodniowej adaptacji w warunkach laboratoryjnych. Sprawdzono także zmiany różnorodności funkcjonalnej mikroorganizmów osadu czynnego pobranego z oczyszczalni ścieków podczas hodowli w warunkach laboratoryjnych. Stwierdzono, iż proces aklimatyzacji odgrywa ważną rolę w adaptowaniu osadu czynnego do warunków laboratoryjnych. Wykazano również, że poddanie osadu nadmiernego procesowi oczyszczania może prowadzić do zmian różnorodności funkcjonalnej tego środowiska.
3
Content available Areny jako proleki
EN
Nowadays, improvement of physicochemical, biopharmaceutical and pharmacokinetic properties of pharmacologically active compounds is connected with development of prodrugs. Prodrugs are defined as pharmaceutical compounds inactive in their parent form and converted either chemically or enzymatically to the active derivative in the organism. A lot of prodrugs are aromatic compounds because of benzene ring reactivity. There are two main classes of prodrugs. In the carrier-linked prodrugs, the active drug is linked to a carrier through bioreversible covalent bond removed by enzymatic or chemical reactions. The second class comprises bioprecursor prodrugs that are modified in the body to induce the functional groups. Additionally, based on the site of prodrugs conversion into their active forms, they are classified into two groups: prodrugs metabolized intracellulary and prodrugs metabolized extracellulary. Chemical or enzymatic transformation of prodrugs may occur through their reduction, decarboxylation, oxidative deamination, cyclization, phosphorylation and/or hydrolysis. These reactions enable to overcome different barriers in drug delivery through changes in aqueous solubility, chemical instability and insufficient oral adsorption. It may also cause prolonged duration of drug action. Moreover, the prodrugs strategy allows achieving brain and tumor specific targeting. Summarizing, the designing of the prodrugs seems to be one of the most promising strategies to enhance the therapeutic effect of drugs and reduction of their negative side effects.
PL
Konsekwencją powszechnego stosowania niesteroidowych leków przeciwzapalnych, w tym ibuprofenu, jest ich obecność zarówno w ściekach, jak i w wodach powierzchniowych, do których odprowadzane są ścieki z oczyszczalni komunalnych, co może prowadzić do pojawiania się farmaceutyków również w wodzie wodociągowej. Ze względu na małą zawartość ibuprofenu w środowisku wodnym nie obserwuje się toksyczności ostrej, natomiast z uwagi na stały kontakt organizmów z tym lekiem istotne jest poznanie mechanizmów toksyczności chronicznej. Ponadto wiedza na temat migracji ibuprofenu w środowisku wodnym oraz przebiegu jego biodegradacji jest niepełna. Opisano jedynie kilka gatunków mikroorganizmów (głównie grzybów) zdolnych do metabolizowania tego leku. Dotychczasowy stan wiedzy wykazuje, że biotransformacja ibuprofenu zachodzi prawdopodobnie przez jego hydroksylację do 1,2-dihydroksyibuprofenu. Jedynym opisanym szczepem bakterii zdolnym do wykorzystywania ibuprofenu jako źródła węgla i energii jest Sphingomonas sp. Ibu-2. Pierwszym etapem rozkładu tego leku jest tioestryfikacja, a następnie dochodzi do usunięcia łańcucha propionowego z równoczesnym utlenieniem pierścienia do 4-izobutylokatecholu, który podlega ekstradiolowemu rozszczepieniu. Poznanie dróg metabolizowania niesteroidowych leków przeciwzapalnych pozwoli na skuteczniejsze oczyszczanie ścieków komunalnych z tego typu zanieczyszczeń, a przez to znaczącą poprawę jakości wód powierzchniowych.
EN
Common use of non-steroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, leads to drug presence in sewage but also in surface waters, which they enter with municipal treatment plants effluent. As a result, the drugs may also be found in tap water. Due to low ibuprofen concentration in aquatic environment, acute toxicity is not observed. Yet, continuous exposure of aquatic organisms to the drug makes it important to study chronic toxicity mechanisms. Moreover, knowledge of ibuprofen migration and the time course of its biodegradation in the aquatic environment is incomplete. Only a few microorganism species (mainly fungi) able to metabolize ibuprofen have been described. The current research suggests that ibuprofen biotransformation proceeds by its hydroxylation to 1,2-dihydroxyibuprofen. Sphingomonas spp. Ibu-2 is the only described bacterial strain able to use ibuprofen as a sole carbon and energy source. Thioestrification is the first step in ibuprofen degradation. Then, propionic chain is removed with simultaneous oxidation of aromatic ring to 4-isobutylcatechol, which is then cleaved by extradiol enzymes. Knowledge of pathways of NSAID metabolism will allow for more effective removal of such pollutants from municipal wastewater, resulting in a significant improvement of surface water quality.
PL
Obecność aromatycznych nitrozwiązków w środowisku uwarunkowana jest głównie działalnością antropogeniczną. Z powodu specyficznej grupy funkcyjnej, powodującej dezaktywację pierścienia, tylko nieliczne drobnoustroje wykształciły odpowiednie mechanizmy ich degradacji lub transformacji. Ze względu na oporność nitrozwiązków na mikrobiologiczną degradację w ostatnich latach znaczną uwagę poświęca się badaniom oraz wdrażaniu metod tzw. pogłębionego (zaawansowanego) utleniania. Metody te są często wystarczająco skuteczne w usuwaniu wielu związków aromatycznych zawartych w wodach odpadowych. Umożliwiają one pełną mineralizację zanieczyszczeń, a substancje chemiczne stosowane w tych procesach rozkładają się do nieszkodliwych produktów ubocznych. Wspólna cechą tych systemów jest fakt, iż umożliwiają one generowanie wysoko reaktywnych rodników hydroksylowych OH, wchodzących w reakcje niemal ze wszystkimi związkami organicznymi. Ze względu na wysokie koszty tych metod, podejmuje się próby zintegrowania tanich, ale mało efektywnych metod biologicznych z wydajnymi, ale drogimi metodami chemicznymi. Kombinacja wstępnej obróbki chemicznej toksycznych nitrozwiązków z utlenianiem na drodze biologicznej wydaje się być obiecującą alternatywą w stosunku do metod konwencjonalnych oczyszczania ścieków.
EN
Nitroaromatic compounds are common contaminants enter the environment mainly as a result of anthropogenic activities. These compounds are highly resistant to degradation due to the presence of deactivating groups on the aromatic ring. Hence only few microorganisms have developed mechanisms of their degradation or transformation, considerable attention has recently been paid to the application of advanced oxidation processes in nitroaromatics elimination. In these systems highly reactive hydroxyl radicals OHo, the most powerful oxidizing agent that interact with, almost all organic compounds are generated. Advanced oxidation processes have shown to be effective enough in aromatic hydrocarbons removal. These processes enable complete mineralization of contaminants. Moreover, reagents are break down into harmless by-products after use. Although chemical methods are very effective in degrading the contaminants they are very expensive. Integration of initial chemical treatment of nitroarenes and biological oxidation appears to be promising alternative to conventional way of wastewater treatment.
PL
Dioksygenazy intradiolowe są kluczowymi enzymami szlaku orto rozkładu związków aromatycznych. Ze względu na rodzaj intermediatu, którego pierścień rozszczepiają, enzymy te zaliczane są do trzech klas. Obecnie, dzięki zastosowaniu nowoczesnych metod badawczych takich jak: krystalografia rentgenowska, spektrometria mas, spektroskopia elektronowego rezonansu paramagnetycznego oraz spektroskopia rentgenowska, możliwe jest dokładne poznanie nie tylko ich budowy przestrzennej, ale również wyjaśnienie sposobu wiązania się substratu z ligandami centrum aktywnego oraz poznanie mechanizmu katalizy.
EN
Intradiol dioxygenases are essential enzymes of ortho pathway involved in the decomposition of aromatic compounds. Enzymes are grouped into three classes on account of a type of the intermediate whose ring they cleave. Nowadays, the application of such modern research methods as X-ray crystallography, mass spectrometry, electron paramagnetic resonance spectroscopy, and X-ray spectroscopy creates possibilities for the thorough understanding of their spatial structure as well as for explaining the way of substrate binding with ligands in the active site and learning the catalysis mechanism.
EN
4-chlorophenol belongs to the group of xenobiotics that exhibits their toxicity independently of the environment and kind of organism. This monochlorophenol is found to be very hazardous to various organisms, and still new attempts are made to find the cheapest and the safest way to remove it from the polluted environments. Biological methods using the degradation potential of natural habitants of temporary polluted niches are preferentially used. Since not each organism is able to survive in the presence of even low 4-chlorophenol concentration level the influence of additional source of carbon and energy on its toxicity to bacteria was verified. In this research phenol, benzoate, 4-hydroxybenzoate,3,4-dihydroxybenzoate and glucose were used as the nutritious substrates for Gram-negative Stenotrophomonasmaltophilia KB2 and Gram-positive Planococcus sp. S5 strain. It was found that phenol, benzoate and glucose lowered the toxicity of 4-chlorophenol to Stenotrophomonas maltophilia KB2 strain while benzoic acids with one or two hydroxyl groups as well as glucose diminished toxic effects of this chlorophenol on the cells of Gram-positive strain Planococcus sp. S5.
PL
4-Chlorofenol jest przedstawicielem grupy ksenobiotyków, które wykazują swoja toksyczność niezależnie od warunków i rodzaju organizmu. Ponieważ ten izomer monochlorofenoli okazuje się być bardzo niebezpieczny dla różnych organizmów, nieustannie podejmowane są próby poszukiwania tanich i bezpiecznych jednocześnie sposób ów jego usuwania ze środowiska. Szczególnym zainteresowaniem cieszą się metody wykorzystujące potencjał degradacyjny typowych mieszkańców, zasiedlających zanieczyszczone tereny. Jednak nie każdy (mikro)organizm jest w stanie przeżyć w obecności nawet bardzo niskich, lecz toksycznych stężeń 4-chlorofenolu. Dlatego przedmiotem badań była ocena poziomu toksyczności 4-chlorofenolu w obecności dodatkowego źródła węgla i energii. W badaniach wykorzystano naturalną zdolność szczepów środowiskowych: gram ujemnego Stenotrophomonas maltophilia KB2 oraz gram dodatniego Planococcus sp. S5 do rozkładu fenolu, benzoesanu, kwasu4-hydroksybenzoesowego oraz kwasu protokatechowego i wzrostu w obecności tych związków aromatycznych. Wykazano, że fenol, benzoesan oraz glukoza (wykorzystana w badaniach jako kontrolny substrat wzrostowy) obniżały toksyczność 4-chlorofenoludla szczepu Stenotrophomonas maltophilia KB2, natomiast kwas benzoesowy i jego badane hydroksylowe pochodne,jak również glukoza, zmniejszały toksyczny efekt 4-chlorofenolu na szczep Planococcus sp. S5.
PL
Związki aromatyczne, stanowiące duże zagrożenie dla organizmów żywych, rozkładane są przez mikroorganizmy do czterech głównych intermediatów: katecholu, kwasu protokatechowego, hydroksychinolu i kwasu gentyzynowego. Ze względu na dużą wrażliwość wolnych enzymów na zmienne warunki środowiska coraz częściej w technologiach oczyszczania ścieków stosuje się immobilizowane enzymy. Obecnie najpowszechniej stosowanym związkiem sieciującym jest glutaraldehyd, a nośnikami - membrany w układach przepływowych. Spośród enzymów stosowanych w technologiach oczyszczania terenów zdegradowanych, miedzy innymi zastosowanie znalazły immobilizowane: peroksydaza, lakaza oraz dioksygenazy katecholowe. Zaimmobilizowane enzymy odznaczają się większą stabilnością w czasie oraz odpornością na zmienne warunki środowiska. Ponadto stosowanie immobilizowanych enzymów pozwala na ich odzyskiwanie po zakończonym procesie, co obniża koszty bioprocesów.
EN
Aromatic compounds are considered as one of the most toxic and weakly degraded xenobiotics. They are degradated to four key intermediates such as catechol, protocatechuate, hydroxyquinol and gallic acid. Free enzymes are very sensitive to changing conditions of environment. That is a reason of immobilized enzymes very often use in technologies of sewage treatment. Glutaraldehyde is the most popular cross-linking agent and membranes in flow systems are the most often applied carrier in immobilization at present. The most often using enzymes in environmental treatment are immobilized peroxidise, laccase and catechol dioxygenases. Immobilized enzymes are more stable in time and resistant to environmental conditions changes. Immobilized enzymes use allow to recover them after finished process and, in the result, bioprocess cost reduction.
PL
Szczepy bakterii Stenotrophomonas maltophilia KB2 oraz Pseudomonas putida N6 odznaczają się zwiększoną zdolnością do degradacji związków aromatycznych. W badaniach stwierdzono całkowity rozkład fenolu (3 mmol/dm3) w ciągu pięciu godzin przez oba badane szczepy. U szczepu KB2 po indukcji fenolem wykazano obecność 2,3-dio-ksygenazy katecholowej odpowiedzialnej za meta-rozszczepienie związków aromatycznych, natomiast u szczepu Pseudomonas putida N6 wykazano obecność 1,2-dioksygenazy katecholowej, charakterystycznej dla szlaku orto rozszczepienia pierścienia aromatycznego. W wyniku badań nad wrażliwością tych enzymów na obecność jonów metali wykazano, że jony Zn2+ aktywowały 2,3-dioksygenazę katecholową szczepu KB2. Wszystkie pozostałe jony były inhibitorami tego enzymu. Spośród przebadanych jonów metali najsilniejszym inhibitorem obu wyizolowanych dioksygenaz okazał się jon Cu2+, natomiast w mniejszym stopniu aktywność 1,2-dioksygenazy katecholowej szczepu N6 hamowały Cd2+ i Zn2+. Wzrost aktywności tego enzymu zaobserwowano w obecności Co2+. Pozostałe jony metali nie wpłynęły znacząco na aktywność 1,2-dioksygenazy katecholowej szczepu N6. Stwierdzona w badaniach częściowa aktywność obu badanych dioksygenaz po zastosowaniu soli metali sugeruje możliwość wykorzystania szczepów bakterii Stenotrophomonas maltophilia KB2 oraz Pseudomonas putida N6 do oczyszczania środowisk skażonych związkami aromatycznymi.
EN
The strains of Stenotrophomonas maltophilia KB2 and Pseudomonas putida N6 are characterized by an enhanced capacity for degrading aromatic compounds: within five hours of incubation both the strains were found to provide a complete degradation of phenol (3 mmol/dm3). Upon induction with phenol, catechol 2,3-dioxygenase, an enzyme responsible for the meta-cleavage of aromatic compounds, was detected in the Stenotrophomonas maltophilia KB2 strain, whereas in the Pseudomonas putida N6 strain the presence was revealed of catechol 1,2-dioxygenase, an enzyme characteristic of the pathway for the orthofission of the aromatic ring. Tests on the sensitivity of the enzymes to metal ions have demonstrated that Zn2+ ions activated catechol 2,3-dioxygenase in the KB2 strain. The other metal ions were found to be inhibitors of this enzyme. Among the metal ions tested, the Cu2+ ion was the strongest inhibitor of the two isolated dioxynases. Slightly weaker was the inhibition of catechol 1,2-dioxygenase induced by Cd2+ and Zn2+ ions in the N6 strain. The activity of this enzyme increased in the presence of Co2+ ions. The other ions had no significant influence on the activity of the catechol 1,2-dioxygenase isolated from the N6 strain. The partial activity of both dioxygenases observed upon the application of metal salts suggests that both the strains, Stenotrophomonas maltophilia KB2 and Pseudomonas putida N6, may contribute much to the remediation of an environment polluted with aromatic compounds.
12
Content available remote Mikrobiologiczny rozkład alkanów ropopochodnych
PL
W środowisku naturalnym występują mikroorganizmy odznaczające się zdolnością do biodegradacji alkanów ropopochodnych; zarówno w warunkach tlenowych, jak i beztlenowych. W środowisku aerobowym rozkład prostołańcuchowych alkanów zachodzi trzema drogami: poprzez oksydację terminalną, subterminalną i diterminalną. Utlenianie cyklicznych alkanów przebiega poprzez utlenienie do formy laktonowej, której hydroliza prowadzi ostatecznie do kwasów dikarboksylowych. Degradacja w warunkach beztlenowych wymaga w środowisku obecności alternatywnych akceptorów elektronów. Utlenianie alkanów w środowisku anaerobowym prowadzi – podobnie jak w środowisku aerobowym – do produktów włączanych w centralny metabolizm.
EN
Numerous microorganisms able to utilizing of saturated hydrocarbons as a carbon and energy source under aerobic as well as anaerobic conditions in natural environment was observed. Degradation of aliphatic hydrocarbons in aerobic environment proceeds by terminal, subterminal or diterminal oxidation. Cycloalkanes are transformed by oxidase system to corresponding cyclic alcohols, which are then dehydrated. Monooxygenase lactonises the ring of ketone, subsequently opened by a lactone hydrolase. Product of hydrolysis, dicarboxylic acid is degraded further by beta-oxidation. For degradation under anaerobic conditions of aliphatic hydrocarbons presence of alternative electron acceptors in environment is necessary. Alkanes have to be activated by addition of a fumarate molecule to the alkane. Alkyl-succinate derivative is then linked to CoA and converted into an acyl-CoA, which can be further metabolized by the beta-oxidation.
13
Content available Mikrobiologiczny rozkład kwasu galusowego
PL
Kwas galusowy należy do grupy roślinnych związków zwanych polifenolami. Związek ten występuje w roślinach w postaci wolnej i związanej w estrach. Rozkład GA zachodzi zarówno w tlenowych, jak i beztlenowych warunkach, a główną rolę w jego degradacji odgrywają mikroorganizmy. Kluczowymi enzymami tlenowej degradacji GA są, należące do oksygenaz, dioksygenazy rozszczepiające, katalizujące rozpad pierścienia aromatycznego z udziałem tlenu. Tlenowa degradacja kwasu galusowego u bakterii może zachodzić szlakiem meta, inicjowanym przez dioksygenazę galusanową i 4,5-dioksygenazę protokatechową, lub szlakiem orto, zapoczątkowanym aktywnością 3,4-dioksygenazy protokatechowej. Produktami rozkładu GA stwierdzonymi u Pseudomonas putida są pirogronian i szczawiooctan. Rozkład GA z udziałem tlenu powiązany jest również ze szlakiem ß-ketoadypinowym kwasu protokatechowego, którego końcowymi produktami są acetylo-CoA i bursztynylo-CoA. Stwierdzono także obecność tlenowej degradacji GA u grzybów. Głównymi związkami przejściowymi beztlenowej degradacji GA są floroglucyna oraz rezorcyna. Kluczowym produktem przejściowym w degradacji kwasu galusowego poprzez floroglucynę jest 3-hydroksy-5-ketoheksanian (HOHN). Rezorcyna, drugi produkt przejściowy beztlenowej degradacji GA, powstaje z floroglucyny i pirogalolu przez dehydroksylację. Związek ten może ulegać następnie redukcji z udziałem reduktazy rezorcynowej lub hydrolizie do kwasu 5-keto-2-heksenowego.
EN
Gallic acid (3,4,5-trihydroxybenzoic acid) is widely distributed throughout the plant kingdom. It is present in almost all plants. High gallic acid contents can be found in gallnuts, grapes, tea, hops and oak bark. According to its biochemical properties gallic acid is an industrially important chemical used as an antioxidant in food, cosmetics and pharmaceutical industries. It possesses a lot of potential therapeutic properties including anti-cancer and antimicrobial ones. The gallic acid is readily utilized by oxidative breakdown to simple aliphatic acids that are metabolized through the citric acid cycle. Although different aerobic pathways for the aromatic acids biodegradation are known they usually involve the formation of protocatechuate as a common intermediate. Protocatechuate may be cleaved by protocatechuate 3.4- dioxygenase [EC 1.13.11.3], which catalyzes the intradiol addition of molecular oxygen and forms 2-pyrone-4,6-dicarboxylic acid as well as protocatechuate 4.5-dioxygenase [1.13.11.8] that catalyzes extradiol addition of molecular oxygen result in 4-carboxy-2-hydroxy-cis,cis-muconic semialdehyde formation. Another mechanism of gallic acid degradation is observed in fungi. In Aspergillus niger gallic acid is oxidatively cleaved by an oxygenase to unstable tricarboxylic intermediate decarboxylated by an oxidative decarboxylase to cis-aconitic acid enter the citric acid cycle. Aspergillus flavus degrades gallic acid to oxaloacetic acid and finally pyruvic acid through the tricarboxylic acid intermediates. Different mechanisms of anaerobic breakdown of gallic acid are known. At the first step of its degradation gallate is decarboxylated to 1,2,3-trihydroxybenzene, which is isomerized to phloroglucinol by pyrogallol-phloroglucinol isomerase and then reduced to dihydrophloroglucinol by phloroglucinol reductase. In the next step dihydrophloroglucinol is converted to 3-hydroxy-5-oxohexanonic acid (HOHN) by dihydrophloroglucinol hydrolase. Then, HOHN may be degraded through different pathways. The first one is its conversion to 3,5-dioxohexanoate (triacetate) by HOHN dehydrogenase and ultimately to three molecules of acetyl-CoA via triacetyl-CoA by the sequential enzymatic reactions catalyzed by triacetyl-CoA transferase, triacetate-ketothiolase, acetoacetyl-CoA-ketothiolase, phosphotransacetylase and acetate kinase. In methanogenic conditions HONH-CoA is transformed to butyrate or acetate, which are finally degraded to methane and carbon dioxide.
EN
Pseudomonas sp. strain USI was able to degrade 2,4-, 2,5- and 3,4-dichlorophenol. The metabolic pathways of isomers of dichlorophenols proceeded differently. 4-Chlorophenol and subsequently catechol appeared as intermediates of 2,4-dichlorophenol and 3,4-dichlorophenol degradation. Catechol was the only one observed intermediate of 2,5-dichlorophenol degradation. These results indicate that the pathway of dichlorophenols degradation proceeded by the gradual dechlorination at the ortho position of 2,4-dichlorophenol and at the meta position of 3,4-dichlorophenol, and subsequently at the para position. Intradiol aromatic ring cleavage took place only after removal of all chlorine substituents from the aromatic ring and the introduction of a hydroxyl group at the ortho position.
PL
W badaniach podjęto próbę określenia zdolności szczepu Pseudomonas sp. US1 do degradacji dichlorofenoli. Stwierdzono, iż: badany szczep degraduje 2,4-, 2,5- oraz 3,4-dichlorofenol, jednak metaboliczne szlaki degradacji tych izomerów chlorofenoli przebiegają odmiennie. 4-Chlorofenol oraz katechol występowały jako intermediaty podczas degradacji 2,4- i 3,4-dichlorofenolu. Z kolei podczas degradacji 2,5-dichlorofenolu obserwowano obecność tylko katecholu. Uzyskane wyniki wskazują, iż: szlak degradacji dichlorofenoli przez szczep USI zachodzi poprzez stopniowe dechlorynacje w pozycji orto 2,4-dichlorofenolu i w pozycji meta 3,4-dichlorofenolu, a następnie w pozycji para. Intradiolowe rozszczepienie pierścienia aromatycznego chlorofenoli przez szczep US2 zachodzi tylko po usunięciu wszystkich chlorowych podstawników z pierścienia aromatycznego i po wprowadzeniu do niego grupy hydroksylowej w pozycji orto.
EN
The influence of additional, readily metabolised, carbon sources on the degradation of dichlorophenols (2,4-dichlorophenol, 2,5-dichlorophenol and 3,4-dichlorophenol) and pentachlorophenol, by a strain Pseudomonas sp., was examined in a mineral salts medium. The presence of glucose and yeast extract brought about the increase of dichlorophenols degradation rate in comparison with the bacterial cultures without an additional carbon source. Different results were obtained when the degradation of pentachlorophenol in the presence of additional carbon sources was examined. The addition of yeast extract didn't change degradation rate of pentachlorophenol by a strain Pseudomonas sp. compared to the bacterial cultures without an additional carbon source. The presence of glucose or sodium citrate inhibited the pentachlorophenol decomposition. The addition of any supplementary carbon source to the bacterial culture with any tested chlorophenol caused the increase of the viability of a strain Pseudomonas sp. cells.
PL
Szczep Pseudomonas sp. wykazywał zdolność do rozkładu wybranych chlorofenoli, jednak nie obserwowano wzrostu hodowli bakteryjnej w trakcie prowadzenia badań. W podjętych badaniach sprawdzono wpływ obecności dodatkowego źródła węgla na proces degradacji dichlorofenoli i pentachlorofenolu przez szczep Pseudomonas sp. Wykazano wzrost szybkości degradacji dichlorofenoli w obecności glukozy lub ekstraktu drożdżowego w porównaniu z hodowlami bez dodatkowego źródła węgla. Odmienne wyniki uzyskano w badaniach nad szybkością degradacji PCP w obecności dodatkowego źródła węgla. Dodanie ekstraktu drożdżowego nie zmieniło szybkości degradacji pentachlorofenolu w porównaniu z hodowlą bez dodatkowego żródła węgla. Obecność glukozy lub cytrynianu sodu do pożywki hamowało rozkład pentachlorofenolu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.