Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper is concerned with the mechanical response of a single-walled carbon nanotube. Euler-Bernoulli’s beam theory and Hamilton’s principle are employed to derive the set of governing differential equations. An efficient variational method is used to determine the solution of the problem and Legendre’s polynomials are used to define basis functions. Significance of using these polynomials is their orthonormal property as these shape functions convert mass and stiffness matrices either to zero or one. The impact of various parameters such as length, temperature and elastic medium on the buckling load is observed and the results are furnished in a uniform manner. The degree of accuracy of the obtained results is verified with the available literature, hence illustrates the validity of the applied method. Current findings show the usage of nanostructures in vast range of engineering applications. It is worth mentioning that completely new results are obtained that are in validation with the existing results reported in literature.
EN
The South Wagad Fault (SWF) is an E–W trending fault that delimits the Wagad uplift comprising Mesozoic rocks in its northern upthrown block and Neogene–Quaternary sediments in the southern downthrown block. Detailed GPR investigations were carried out at seven sites selected after field studies. All profiles clearly showed the lithological contrast across the fault. The sharp amplitude contrast of the radar waves along a vertical to sub-vertical line is interpreted as the near surface trace of the SWF. As the Quaternary sediments are not displaced, we infer that no large magnitude earthquake has occurred along the SWF in late Quaternary. We attribute the low magnitude of neotectonic activity along the SWF to gentle warping of the Tertiary rocks in the southern downthrown block and greater accumulation of compressive stresses along the nearby KMF with an opposite structural setting. This is consistent with the observed variable levels of ongoing seismicity in the region around the SWF.
EN
The performance of RegCM4 for seasonal-scale simulation of winter circulation and associated precipitation over the Western Himalayas (WH) is examined. The model simulates the circulation features and precipitation in three distinct precipitation years reasonably well. It is found that the RMSE decreases and correlation coefficient increases in the precipitation simulations with the increase of model horizontal resolutions. The ETS and POD for the simulated precipitation also indicate that the performance of model is better at 30 km resolution than at 60 and 90 km resolutions. This improvement comes due to better representation of orography in the high-resolution model in which sharp orography gradient in the domain plays an important role in wintertime precipitation processes. A comparison of model-simulated precipitation with observed precipitation at 17 station locations has been carried out. Overall, the results suggest that 30 km model produced better skill in simulating the precipitation over the WH and this model is a useful tool for further regional downscaling studies.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.