Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule omówiono ważny problem ochrony środowiska w rejonie złóż ropy i gazu, którym ostatnio poświęcano wiele uwagi. Obecność starych, niedostatecznie uszczelnionych lub całkowicie nieuszczelnionych otworów wiertniczych, wcześniej wykorzystywanych do eksploatacji ropy i gazu ziemnego, jest poważnym zagrożeniem. W Czechach, na Południowych Morawach (obszar eksploatacji węglowodorów zarówno w przeszłości jak i obecnie), istnieje bardzo wiele (setki) otworów eksploatacyjnych. W materiałach archiwalnych bardzo trudno (często wręcz niemożliwe) jest znaleźć informacje na temat zarówno sposobu zakończenia eksploatacji w tych otworach, jak i zastosowanych procedur ich likwidacji. W trakcie niedawno prowadzonych badań i prac nad ponowną likwidacją otworów stwierdzono, że wiele z nich było zlikwidowanych nieodpowiednio i nieprofesjonalnie, a niektóre nadal nie zostały zlikwidowane. Stwarza to znaczne zagrożenie dla obszaru Południowych Moraw, w szczególności dla źródeł wody pitnej oraz rolnictwa (Obszar Chroniony Naturalnej Akumulacji Wód- CHOPAV, Czwartorzęd Rzeki Morawy). Co więcej, jest to poważne zagrożenie dla obszaru występowania bardzo cennych biotopów. Artykuł omawia możliwości usunięcia tych ekologicznych zagrożeń na obszarach złóż węglowodorów poprzez recykling dawnych otworów eksploatacyjnych będących źródłem zanieczyszczenia gleb i wód. Podobne problemy z pewnością pojawiają się na obszarze Polski, gdzie intensywnie eksploatowano znacznie więcej złóż, a otwory istniały już w XIX w., w okresie kiedy zarówno wiedza o procedurach likwidacji otworów wiertniczych, jak i świadomość znaczenia właściwego uszczelnienia starych otworów były niewielkie.
EN
This article deals with a significant issue of environmental protection of oil and gas deposits that have recently drawn a considerable attention. The presence of old insufficiently sealed or entirely unsealed wells, formerly serving a purpose of oil and natural gas extraction, pose a significant threat to the environment. In the South Moravia region of the Czech Republic (an area of hydrocarbon extraction both in historical and recent times), there is a significant amount (hundreds) of production wells. It is very difficult or often even impossible to find information in archival materials on the cease of extraction from these wells and on the system of abandonment procedures applied. During the recent surveying and re-abandonment works, it was found that many wells had been abandoned inadequately and unprofessionally, and numbers of wells still have not been abandoned at all. This poses a considerable risk to the South Moravian landscape, especially to the sources of drinking water and to agriculture (to the Protected Area of Natural Water Accumulation - CHOPAV, Morava River Quaternary). Furthermore, it is a significant threat to the areas where extremely valuable biotopes occur. This article discusses the possible disposal of these ecological hazards to the areas of hydrocarbon deposit occurrences through recycling of old drawing wells as potential pollution sources of soil and water. Similar problems have certainly appeared in the Polish territory, where intense extraction took place at a far greater number of deposits, and where the wells already operated in the 19th century, in days gone by when there was little knowledge of abandonment procedures and little awareness of proper old well sealing.
EN
Crude oil and natural gas belong to the most important raw minerals used by industry. Their world’s consumption remains on a high level with an increasing tendency, similarly the demand for exploration-prospecting works. The drilling works associated with reservoir prospecting and development are connected with the risk of reaching intervals containing highly pressurized formation fluids and with blowouts. When drilling the first well in a given area, the operator frequently does not have a full set of data about reservoir parameters of the drilled horizons. Investors want the drilling companies finish their works in the shortest possible time, therefore technologies which maximize the drilling advancement are employed. One of such techniques is drilling with minimally higher hydrostatic pressure of mud as compared to the reservoir pressure. If the drilling hits a porous interval of elevated reservoir pressure, reservoir fluid may inflow to the wellbore. If the hydrostatic pressure of fluid column in the wellbore is lower than reservoir pressure, the wellbore will be fed with reservoir water, which will consequently migrate towards the top of the well. This may result in a kick and then a blowout. The inflow to the wellbore can be handled only by well trained crew and appropriate equipment. The crew has to recognize the flow, and depending on the condition of the well take suitable measures. Sometimes the lack of proper training, errors, hardware failures and improperly protected top of the well lead to a fully developed blowout from the well. Particularly dangerous are cases when the surface blowout prevention equipment or other elements of the well BOP facilities break down. In such situations rescue teams with specialist equipment have to be involved. Exemplary applications and technological potential of specialist blowout control equipment in uncontrolled kick of reservoir fluid though the string are presented in the paper. The designed tool and its functions allow for killing or reducing the outflow.
EN
The paper presents information about the latest pilot project entitled “Preparation of a Research Pilot Project on CO2 Geological Storage in the Czech Republic (REPP-CO2)”. This project was funded by the Norway Grants and performed by the consortium led by the Czech Geological Survey (ÈGS) in cooperation with a Norwegian partner – IRIS (International Research Institute of Stavanger), and VSB – Technical University of Ostrava also employees of Faculty of Mining and Geology and the Faculty of Metallurgy and Materials Engineering. The scientists from the Institute of Applied Geology (Silesian University of Technology) were also involved in this Project. The main objective of the research activities was to develop and improve the methodology of chosen laboratory, modelling, and simulation and monitoring procedures and techniques, which are essential for the assessment of CO2 storage and other related activities, such as static and dynamic modelling, risk analysis, repository monitoring, etc.
EN
The term ‘geohazard’ is used to describe the natural and anthropogenic phenomena and processes taking place in the natural environment in the context of their negative influence on natural environment, including the geological one. The degree of geohazard is frequently evaluated on the basis of catalogued descriptions (activity of natural environment and human impact), which help identify particular hazards and ascribe them their value. According to Czech standards, 45 geohazards have been classified and described in detail in view of: geological knowledge, origin and way in which the hazard was evoked, geographical range, time, associated processes, social aspect and monitoring methods. Research works were conducted in a football stadium located in an area of underground hard coal extraction and surface production of raw minerals. The BAZALY stadium, where FC Banik Ostrava played its matches, is located in Ostrava in an area of former mining fields of Silesian Ostrava. These coal mines were closed in the 1990s, but even so they still create environmental hazards. The paper is devoted to research works and risk analysis of the environmental impact of mining activities, old workings and liquidated mines in terms of geohazard. The basic geohazard in the stadium area is methane migration from tectonically disturbed rock mass, also caused by incorrectly closed workings. Another hazard is associated with the increasing mining damage, i.e. tectonic movements, subsidence, local sinkholes, lowering groundwater level etc.
EN
This article deals with the development of tourism and the transformation of a small, but significant for its industrial past, Southern Moravian town of Hodonín and its surroundings. The history of the city is briefly summarized and put in context with the progressing industrialization of the region (production of lignite and hydrocarbons, followed by a significant reduction of industries and, consequently, resulting touristic activities). Specifically, the most attractive regional touristic activities, such as enotourism, cyclo-tourism and water tourism, are listed in this paper. In particular, cyclo-tourism is strongly linked with enotourism as most of the cycling trails (included into the Greenways network) pass through the best known wineries in the area, and they also form a functional system of communication routes with basic cycling trails in the Czech Republic. The progress in the development of water tourism is, by contrast, enabled by industrial advancements, where the Baťa Canal (an important technical monument) has been utilized as a waterway. Eventually, the Museum of Oil Mining and Geology in Hodonín attractively introduces the tourists into the history and present state of oil and gas production in the region.
PL
Artykuł porusza problem zagospodarowania turystycznego i przekształceń zachodzących w mieście Hodonín i w jego otoczeniu. To niewielkie miasto, położone w południowej części Moraw, było w przeszłości znaczącym ośrodkiem przemysłowym. Autorzy przedstawiają zwięźle historię miasta i rozwój przemysłu w regionie (wydobycie węgla brunatnego i węglowodorów). Po okresie uprzemysłowienia nastąpiło ograniczenie produkcji, połączone z rozwojem turystyki. Szczegółowo omówiono najbardziej atrakcyjne formy turystyki w regionie: turystykę winiarską, turystykę rowerową i turystykę wodną. Pokazano ścisły związek turystyki rowerowej i winiarskiej, ponieważ większość lokalnych szlaków rowerowych (należących do sieci Greenways) prowadzi przez najbardziej znane w okolicy winnice. Szlaki te powiązane są zresztą z podstawowym systemem szlaków rowerowych Republiki Czeskiej. Natomiast rozwój turystyki wodnej umożliwiają dawne obiekty infrastruktury przemysłowej, takie jak np. Kanał Baťa, będący zabytkiem techniki, obecnie wykorzystywany jako droga wodna. Z kolei Muzeum Eksploatacji Ropy Naftowej i Geologii w Hodonínie wprowadza turystę w problemy historii i obecnego stanu produkcji ropy naftowej i gazu ziemnego w regionie.
EN
VŠB – Technical University of Ostrava (VŠB-TU Ostrava) has unique conditions for analysing temperature changes in the rock mass while borehole heat exchangers have been operational for a long time. The Auditory building is heated with a system of heat pumps (borehole heat exchangers). It is one of the largest such objects in the Czech Republic. The heat of the rock mass is provided by a system of technological boreholes. The research boreholes are used for monitoring temperature changes in the rock mass while using the Auditory’s heating system. The system for monitoring boreholes within the area of technological borehole activity is called Large Research Polygon (LRP). Apart from LRP, the university also possesses another research polygon – Small Research Polygon (SRP) located at a distance from the LRP near the Energy Research Centre (ERC). All boreholes performed within both research fields are equipped with sensors monitoring the temperature changes while the Auditory building is being heated (thermal energy is recovered from the rock mass in winter) or cooled (thermal energy is transmitted to the rock mass in summer). The main objective of the research carried out in both research fields is checking the functionality and efficiency of the entire system. Certain aspects of thermal energy recuperation from the rock mass are described. The paper is closed with the results of monitoring and calculation of temperature in the surface layers to about 20 m of depth.
PL
Wyższa Szkoła Górnicza w Ostrawie ma niepowtarzalną możliwość badania zmian temperatury w górotworze podczas eksploatacji pomp ciepła. Budynek audytorium jest ogrzewany właśnie za pomocą systemu pomp ciepła. Obiekt ten jest największym w Republice Czeskiej z punktu widzenia liczby otworów (110) i mocy pomp ciepla (700 kW). Na obszarze zestawu otworów głębinowych w okolicy audytorium znajdują się otwory monitoringowe wyposażone w czujniki temperatury, które umożliwiają zapis zmiany temperatury górotworu podczas działania systemu pomp ciepła w otworach wiertniczych. Instalacja ta jest nazywana Wielkim Poligonem Badawczym, a jej głównym celem jest badanie zmian stanu cieplnego górotworu podczas eksploatacji tak dużego systemu. Druga instalacja jest nazywana Małym Poligonem Badawczym, który jest umieszczony w pobliżu audytorium. Składa się z dwóch pomp ciepła oraz pięciu otworów monitoringowych umieszczonych w okolicy otworów wykonanych pod pompy ciepła. Wszystkie otwory zostały wyposażone w czujniki temperatury (analogicznie jak na poligonie Wielkim). Mały poligon jest wykorzystywany do monitorowania zmian temperatury w górotworze podczas ogrzewania (magazynowania nadmiaru ciepła z klimatyzacji podczas lata) oraz chłodzenia (odbioru ciepła z górotworu za pomocą pompy ciepła w zimie). Głównym celem badań jest weryfikacja parametrów pracy tego systemu. Autorzy niniejszego artykułu posiadają bogate doświadczenia w budowie i eksploatacji poligonów badawczych eksploatowanych na VŠB. W artykule zaprezentowano możliwości działania obu poligonów badawczych oraz zachowanie górotworu na głębokości 20 m w otworze monitoringowym, na który oddziaływały zewnętrzne warunki klimatyczne.
EN
In the Czech Republic the electrical energy and heat from geothermal energy can be generated with the use of Engineering/Enhancing Geothermal System (EGS). In this case a downhole heat exchanger is performed to a depth at which the temperature of the rock mass is at least 150–160°C or more, preferably about 200°C. Taking into account the geological conditions in the Czech Republic, such temperatures can be ob- served at about 5000–6000 m of depth. The site of a pilot project of geothermal electrical energy production was selected on the basis of the analysis of deep-seated geological structures in the Czech Republic, i.e. area of crust faults in the Ore Mountains Erzgebirge. The selected geological units consist of the Ore Mountains Fault and Central Bohemian Uplands, which are part of the Ohersky Rift Valley. Two deep research wells are planned in that area, with detailed geological, geophysical and geothermal analyses, including laboratory analyses of sampled rocks (cores).
EN
The CO2 emission is a significant environmental problem threatening the sustained development of mankind. One of the possible ways of limiting the emission is the disposal of carbon dioxide in geologic formations.A pilot project of CO2 storage in geologic formations in the Czech Republic (REPP-CO2) is presented in this paper. The project is part of the Norwegian Fund and the research consortium (headed by the Czech Republic Geologic Office), with VSB-TU Ostrava as a participant. The VSB-TU Ostravais represented by the Faculty of Geology and Mining (HGF) and the Faculty of Metallurgy and Materials Science (FMMI) in the consortium.The research activity of the consortium mainly focuses on the development and improvement of selected laboratory methods, modelling and simulation, which are basic for the evaluation of safety of CO2 storing in geologic forma-tions. Thise paper presents the research conducted by the Faculty of Geology and Mining (HGF) VSB-TU Ostrava within the project.
EN
Drilling process of deep borehole consists of different drilling operations. Each of them can cause numerous different drilling problems especially when a borehole is performed. While drilling the most dangerous problems can occur once the drilling fluids (oil, gas or water) spontaneously flow out from the drilled formations into the borehole and then to the surface. It can also happen that the pressures in the borehole are not balanced and an influx of fluid into the borehole (a kick) will occur. If no action is taken to stop a kick once it begins, then the fluids will be pushed out of the borehole and will be flowing uncontrollably to surface (blow-out). Blow-out is prevented by closing off the well at the surface with special kind of valves (Blow-out Preventers - BOPs). When pressure control over the well is lost, swift action must be taken to avert the severe consequences. These consequences may include: — endangering of human life, — loss of rig and equipment, — negative influence on the environment, — additional costs of bringing the well under control again, — loss of reservoir production. In the case of kick or blow-out will occur in the practical use are different procedures and methods to control a borehole. These procedures and methods depend on the actual drilling operation scenario. One of them can be a tripping operation when the drill string is pulled out or run back again. In this case the drill string is open either after a break-out or before making up the drill pipes and drill collars. There is a variety of tools that can be used to prevent the formation of fluids rising up inside the drill pipes. One of this tool is a safety valve (rod preventers - BOP) to prevent the blow-out of the drill string. This manuał safety valve should be kept on the rig floor at all times. It needs to be a fuli opening ball-type valve so there is no restriction to flow. This valve is installed onto the top of the drill string if a kick occurs during a trip. However, this solution is quite inconvenient and difficult because involves special heavy tools, e.g. a crane. Drilling process of deep borehole consists of different drilling operations. Each of them can cause numerous different drilling problems especially when a borehole is performed. While drilling the most dangerous problems can occur once the drilling fluids (oil, gas or water) spontaneously flow out from the drilled formations into the borehole and then to the surface. It can also happen that the pressures in the borehole are not balanced and an influx of fluid into the borehole (a kick) will occur. If no action is taken to stop a kick once it begins, then the fluids will be pushed out of the borehole and will be flowing uncontrollably to surface (blow-out). Blow-out is prevented by closing off the well at the surface with special kind of valves (Blow-out Preventers - BOPs). When pressure control over the well is lost, swift action must be taken to avert the severe consequences. These consequences may include: — endangering of human life, — loss of rig and equipment, — negative influence on the environment, — additional costs of bringing the well under control again, — loss of reservoir production. In the case of kick or blow-out will occur in the practical use are different procedures and methods to control a bore¬hole. These procedures and methods depend on the actual drilling operation scenario. One of them can be a tripping operation when the drill string is pulled out or run back again. In this case the drill string is open either after a break-out or before making up the drill pipes and drill collars. There is a variety of tools that can be used to prevent the formation of fluids rising up inside the drill pipes. One of this tool is a safety valve (rod preventers - BOP) to prevent the blow-out of the drill string. This manuał safety valve should be kept on the rig floor at all times. It needs to be a fuli opening ball-type valve so there is no restriction to flow. This valve is installed onto the top of the drill string if a kick occurs during a trip. However, this solution is quite inconvenient and difficult because involves special heavy tools, e.g. a crane. This paper presents a new solution making use of special control equipment for the blowing open drill string. This equipment is based on a hydraulic press (named "Drill Pipę Rescue Press I") which has been developed by HBZS, MND S.A. Hodonin and VSB-Technical University of Ostrava, supported by Faculty of Drilling, Oil and Gas AGH-UST Kraków.
EN
CO2 emissions and a future increasing trend can be, by some scientists, considered a serious menace for the sustainable development of mankind and the reduction is necessary for the environment protection. Carbon dioxide is one of the most important gases that causes greenhouse effect, which warms up the earth surface as a consequence of a different heat flow between the earth and the atmosphere.
PL
Omówiono zagadnienia związane z nieodpowiednio zlikwidowanymi płytkimi otworami produkcyjnymi na wyeksploatowanym złożu ropy w pobliżu Hodonína (Morawy południowe, Republika Czeska). Dla danych warunków określono charakterystyczne efekty deformacji przekroju otworu, zależne od możliwości wypierania obecnego w nim płynu złożowego. Dowiedziono, iż w analizowanych warunkach, samoczynne zaciskanie zaniechanych odwiertów nie jest równoważne z likwidacją otworu, który nadal umożliwia komunikację mediów, stwarzając ryzyko zanieczyszczenia wód podziemnych i powierzchni terenu.
EN
The paper presents conclusions of modelling research of inappropriately liquidated shallow production oil wells. For given conditions of pressure and temperature, characteristic deformations of the well’s cross-section were determined, depending on the behavior of fluids that fill the borehole. It was proven that in the analyzed conditions, convergence of abandoned wells is not equivalent to the borehole liquidation, as its open space still allows for contacts of reservoir fluids, posing a threat of pollution to groundwater and ground surface.
PL
VSB - Uniwersytet Techniczny w Ostrawie posiada unikalną możliwość badania zmian temperatury w górotworze dla długotrwałego działania pomp ciepła. Nowy budynek Audytorium jest nie tylko największym obiektem w Republice Czeskiej, ale także w Europie Środkowej, ogrzewanym przez system pomp ciepła. Wraz z systemem otworów technologicznych pozyskujących ciepło z górotworu odwiercono również badawcze otwory monitorujące, które kontrolują zmiany temperatury w otaczającym górotworze podczas eksploatacji systemu grzewczego. System monitorowania zlokalizowany na obszarze działania otworów technologicznych nazywa się Dużym Poligonem Badawczym. VSB-TU posiada drugi systemu badawczego nazywany Małym Poligonem Badawczym i lokalizacją w pobliżu budynku Centrum Badań Energetycznych (CBE). Składa się ona z dwóch odwiertów technologicznych do eksploatacji energii cieplnej przy użyciu pomp ciepła i dziewięciu otworów monitorujących, położonych w pobliżu tych dwóch odwiertów. Wszystkie odwierty wykonane na terenie obu poligonów badawczych wyposażone są w czujniki, które monitorują zmiany temperatury podczas ogrzewania (pobieranie energii cieplnej z ośrodka skalnego w zimie) i chłodzenia (przekazywania energii do górotworu w okresie letnim). Głównym celem badań jest sprawdzenie funkcjonalności i wydajności całego systemu. W artykule zaprezentowano niektóre aspekty zagadnień pozyskiwania energii cieplnej z górotworu oraz wyniki uzyskanych analiz wynikających z monitoringu i pomiarów zmian temperatury w warstwach powierzchniowych górotworu do głębokości około 20 m.
EN
VSB - Technical University of Ostrava has a unique possibility of studying temperature changes in the rock mass for long-term operation of heat pumps. The new Auditory building is not only the biggest object heated by a system of heat pumps in the Czech Republic but also in Central Europe. Along with a system of technological boreholes recuperating the heat of the rock mass there were also performed monitoring boreholes controlling temperature changes in the surrounding rock mass during when the heating system is active. The monitoring system is localized in the area of technological wells, the so called Big Research Range. VSB-TU has another such area called Small Research Range located near the Centre for Energy Investigations. It consists of two technological wells exploiting thermal energy with heat pumps and nine monitoring wells located nearby. All wells performed within both Research Ranges are equipped with sensors monitoring temperature changes during heating (taking energy from rock medium in winter) and cooling (accumulation of energy in the rock mass in summer). The main objective of the research is checking out the functionality and efficiency of the entire system. Some aspects of thermal energy production as well as the results of analyses from the monitoring and measurement of temperature changes in surface layers of the rock mass to about 20 m of depth have been presented in the paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.