Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 61

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
Dielectric properties of a nematic liquid crystal (NLC) mixture ZhK-1282 were investigated in the frequency range of 10²–10⁶Hz and a temperature range of -20 to 80°C. On the basis of the Debye’s relaxation polarization model dielectric spectra of temperature dependence of the orientational relaxation time τ and the dielectric strength δe were numerically approximated at the parallel orientation of a molecular director relative to alternating electric field. Influence of ester components in the mixture plays crucial role in relaxation processes at low temperature and external field frequency. The activation energy of the relaxation process of a rotation of molecules around their short axis was measured in a temperature interval of -20 to +15°C in which the dispersion of a longitudinal component of the dielectric constant takes place. The energy of potential barrier for polar molecules rotation in the mesophase was calculated. The value of the transition entropy from the nematic to isotropic phase was obtained from this calculation. The values of the coefficient of molecular friction and rotational diffusion were obtained by different methods. The experimental data obtained are in a satisfactory agreement with the existing theoretical models.
EN
Designing of a nanoscale Quantum Well (QW) heterostructure with a well thickness of ~60 Å is critical for many applications and remains a challenge. This paper has a detailed study directed towards designing of In0.29Ga0.71As0.99N0.01/GaAs straddled nanoscale-heterostructure having a single QW of thickness ~60 Å and optimization of optical and lasing characteristics such as optical and mode gain, differential gain, gain compression, anti-guiding factor, transparency wavelength, relaxation oscillation frequency (ROF), optical power and their mutual variation behavior. The outcomes of the simulation study imply that for the carrier concentration of ~2 × 10¹⁸cm⁻³ the optical gain of the nano-heterostructure is of 2100 cm⁻¹ at the wavelength is of 1.30 μm. Though the obtained gain is almost half of the gain of InGaAlAs/InP heterostructure, but from the wavelength point of view the InGaAsN/GaAs nano-heterostructure is also more desirable because the 1.30 μm wavelength is attractive due to negligible dispersion in the silica based optical fiber. Hence, the InGaAsN/GaAs nano-heterostructure can be very valuable in optical fiber based communication systems.
3
Content available remote Numerical analysis of SiGeSn/GeSn interband quantum well infrared photodetector
EN
In this paper, detailed theoretical investigation on the frequency response and responsivity of a strain bal-anced SiGeSn/GeSn quantum well infrared photodetector (QWIP) is made. Rate equation and continuity equation in the well are solved simultaneously to obtain photo generated current. Quantum mechanical carrier transport like carrier capture in QW, escape of carrier from the well due to thermionic emission and tunneling are considered in this calculation. Impact of Sn composition in the GeSn well on the frequency response, bandwidth and responsivity are studied. Results show that Sn concentration in the GeSn active layer and applied bias have important role on the performance of the device. Significant bandwidth is obtained at low reverse bias voltage, e.g., 200 GHz is obtained at 0.28 V bias for a single Ge0.83 Sn0.17 layer. Whereas, the maximum responsivity is of 8.6 mA/W at 0.5 V bias for the same structure. However, this can be enhanced by using MQW structure.
EN
Transparent Conductive Electrode (TCE) is an essential part of the optoelectronic and display devices such as Liquid Crystal Displays (LCDs), Solar Cells, Light Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs) and touch screens. Indium Tin Oxide (ITO) is a commonly used TCE in these devices because of its high transparency and low sheet resistance. However, scarcity of indium and brittle nature of ITO limit its use in future flexible electronics. In order to develop flexible optoelectronic devices with improved performance, there is a requirement of replacing the ITO with a better alternate TCE. In this work, several alternative TCEs including transparent conductive oxides, carbon nanotubes, conducting polymers, metal nanowires, graphene and composites of these materials are studied with their properties such as sheet resistance, transparency and flexibility. The advantage and current challenges of these materials are also presented in this work.
EN
Shear wave based acoustic devices are being used in gaseous and liquid environments because of their high-sensitivity. The theoretical study of horizontally polarized shear (SH) waves in a layered structure consisting of a piezoelectric ceramic of P ZT − 5H or BaT iO3 material overlying a couple stress substrate is presented in this paper. The considered substrate is supposed to be exhibiting microstructural properties. The closed form expression of dispersion relations are derived analytically for electrically open and short conditions. The effects of internal microstructures of the couple stress substrate, thickness of P ZT − 5H or BaT iO3 ceramic, piezoelectric and dielectric constants are illustrated graphically on the phase velocity of the piezoelectric layer under electrically open and short conditions.
EN
Most cold rolling mills are prone to chatter problem. Chatter marks are often observed on the strip surface in cold rolling mill leading to downgrade and rejection of rolled material. Chatter impact product quality as well as productivity of mill. In absence of online chatter detection no corrective action can be taken immediately and whole campaign gets affected. Most conventional approach for online chatter detection is by using vibration measurement of mill stands in time & frequency domain. Present work proposes two approaches to detect chatter in cold rolling mill using a statistical technique called Principal Component Analysis (PCA). In this paper two methods are used for chatter detection. First method applies PCA on Fast Fourier Transform (FFT) to differentiate between chatter and non-chatter condition. Second method applies PCA on statistical parameters calculated from raw vibration data to detect chatter.
EN
In this paper, the investigation on effectiveness of the empirical mode decomposition (EMD) with non-local mean (NLM) technique by using the value of differential standard deviation for denoising of ECG signal is performed. Differential standard deviation is calculated for collecting information related to the input noise so that appropriate formation in EMD and NLM framework can be performed. EMD framework in the proposed methodology is used for reduction of the noise from the ECG signal. The output of the EMD passes through NLM framework for preservation of the edges and cancel the noise present in the ECG signal after the EMD process. The performance of the proposed methodology has been validated by using added white and color Gaussian noise to the clean ECG signal from MIT-BIH arrhythmia database at different signal to noise ratio (SNR). The proposed denoising technique shows lesser mean of percent root mean square difference (PRD), mean square error (MSE), and better mean SNR improvement compared to other well-known methods at different input SNR. The proposed methodology also shows lesser standard deviation PRD, MSE, and SNR improvement compared to other well-known methods at different input SNR.
EN
Bone loss is one of the serious health issues in bedridden patients or young generation due to lack of physical activities. Mechanical forces are exerted on the bones through ground reaction forces, liquid loadings and by other contraction activities of the muscles. We are assuming an isotropic half-space with mechanical properties equivalent to that of bone exhibiting microstructures. Consistent couple stress theory introduces an additional material parameter called characteristic length which accounts for inner microstructure of the material. Dispersion relations for leaky Rayleigh waves are derived by considering a model consisting of couple stress half space under the effects of gravity and loaded with inviscid liquid layer of finite thickness or a liquid half space. Impact of the gravity, liquid loadings and microstructures of the material are investigated on propagation of leaky Rayleigh type waves. Phase velocity of leaky Rayleigh waves is studied for five different values of characteristic length parameter which are of the order of internal cell size of the considered material. Variations in phase velocity of leaky Rayleigh waves are also studied under the effect of gravity parameter and thickness of liquid loadings.
EN
In the present research work, crystallographic, optical, molecular, morphological and magnetic properties of Zn1-xCuxO (ZnCu) and Zn1-x-yCeyCuxO (ZnCeCu) nanoparticles have been investigated. Polyvinyl alcohol (PVA) coated ZnCu and ZnCeCu nanoparticles have been synthesized by chemical sol-gel method and thoroughly studied using various characterization techniques. X-ray diffraction pattern indicates the wurtzite structure of the synthesized ZnCu and ZnCeCu particles. Transmission electron microscopy analysis shows that the synthesized ZnCu and ZnCeCu particles are of spherical shape, having average sizes of 27 nm and 23 nm, respectively. The incorporation of Cu and Ce in the ZnO lattice has been confirmed through Fourier transform infrared spectroscopy. Room temperature photoluminescence spectra of the ZnO doped with Cu and co-doped Ce display two emission bands, predominant ultra-violet near-band edge emission at 409.9 nm (3 eV) and a weak green-yellow emission at 432.65 nm (2.27 eV). Room temperature magnetic study confirms the diamagnetic behavior of ZnCu and ferromagnetic behavior of ZnCeCu.
EN
The paper deals with propagation of SH waves in a viscoelastic layer over a couple stress substrate with imperfect bonding at the interface. A dispersion equation of SH waves in a viscoelastic layer overlying the couple stress substrate with an imperfect interface between them has been obtained. Dispersion equations for propagation of SH waves with perfectly bonded interface and slippage interface between two media are also obtained as particular cases. Effects of the degree of imperfectness of the interface are studied on the phase velocity of SH waves. The dispersion curves are plotted and the effects of material properties of both couple stress substrate and viscoelastic layer are studied. The effects of internal microstructures of the couple stress substrate in terms of characteristic length of the material are presented. The effects of heterogeneity, friction parameter and thickness of the viscoelastic layer are also studied on the propagation of SH waves.
EN
In this article, improved residual power series method (RPSM) is effectively implemented to find the approximate analytical solution of a time fractional diffusion equations. The proposed method is an analytic technique based on the generalized Taylor’s series formula which construct an analytical solution in the form of a convergent series. In order to illustrate the advantages and the accuracy of the RPSM, we have applied the method to two different examples. In case of first example, different cases of initial conditions are considered. Finally, the solutions of the time fractional diffusion equations are investigate through graphical representation, which interpret simplicity, accuracy and practical usefulness of the present method.
EN
We present monotone convergence results for general iterative methods in order to approximate a solution of a nonlinear equation defined on a partially ordered linear topological space. The main novelty of the paper is that the operators appearing in the iterative method are not necessarily linear. This way we expand of the applicability of iterative methods. Some applications are also provided from fractional calculus using Caputo and Canavati type fractional derivatives and other areas.
EN
Content-based image retrieval (CBIR) scheme has gained popularity in the field of information retrieval for retrieving some relevant images from the image database based on the visual descriptors such as color, texture and/or shape of a given query image. In this paper, color features have been exploited from each color component of an RGB color image by using multiresolution approach since most of the information of an image is undetected at one resolution level while some other undetectable information is visualized in other multi-resolution levels. Initially, Gaussian image pyramid is employed on each color component of the color image and subsequent DCT is computed directly on the obtained multi-resolution image planes. Then some significant DCT coefficients are selected according to the zigzag scanning order. For formation of the feature vector, we have derived some statistical values from AC coefficients and all other DC coefficients are included entirely. Finally, a similarity measure is suggested during image retrieval process and it is found that the overall computation overhead is reduced due to consideration of the proposed similarity measure. The proposed CBIR scheme is validated on a two standard Corel-1K and GHIM-10K image databases and satisfactory results are achieved in terms of precision, recall and F-score. The retrieved results show that the proposed scheme outperforms significantly over other related CBIR schemes.
EN
A group of polycyclic and aliphatic azido-esters (as energetic plasticizers) have been synthesized by simple synthetic routes and their molecular structures were confirmed by spectroscopic techniques. In addition, their thermal and rheological properties have been determined utilizing DSC, TGA, viscosity, and contact angle. Computational studies of these plasticizers have been performed by means of DFT (B3LYP/6-31G*) to estimate possible stable structures, energies, heat of formation, bond dissociation energies, IR and NMR spectra etc. Their compatibility with glycidyl azide polymer (GAP) binder was studied to explore their applicability in propellants. All of these molecules are novel and have been synthesized with the possibility of scale up.
EN
This work presents a study on the surface morphology, structure and optical behavior of stable phase cadmium sulphide (CdS) nanoparticles synthesized via co-precipitation technique. Scanning electron microscopy (SEM) analysis has been employed to study a cluster formation in the aggregated nanoparticles. An image analysis approach using ImageJ has been used to measure the size of nanoparticles from the SEM micrographs. Fourier transform infrared spectroscopic (FT-IR) analysis identified absorption peaks of Cd–S stretching along with moisture content. X-ray diffraction (XRD) analysis showed that CdS nanoparticles crystallized in wurtzite structure with a preferential orientation along (0 0 2) plane. The particle size, microstrain and lattice constants have been evaluated using XRD data. The lattice parameters of these nanoparticles were found to be shorter than the bulk value which led to lattice contraction. The optical absorption study showed a blue shift in the fundamental absorption edge indicating a quantum size effect.
EN
In the present paper we study the generalized slow growth of special monogenic functions. The characterizations of generalized order, generalized lower order, generalized type and generalized lower type of special monogenic functions have been obtained in terms of their Taylor series coefficients.
EN
Personal cooling garments (PCGs) have gained increased attention in recent years due to heat stress and strain in the working environment. The present study was conducted in hot environments of an iron foundry to evaluate the efficacy of a battery-operated PCG. Twenty-four workers were exposed to climatic conditions of 35.89 ± 1.25 °C, 35% relative humidity during 90-min work with PCG and habitual clothing (HC). Mean weighted skin temperature was significantly lower by 4.84 ± 1.05 °C compared with HC 0.38 ± 1.02 °C (p < 0.05). A statistically significant difference was also observed for 0.492 ± 0.26 g mean sweat loss in the PCG group compared with 0.775 ± 0.42 g in the HC group (p < 0.05). Heart rate, and back and chest skin temperatures were comparatively more reduced in the PCG group compared with the HC group. PCG provides a practical and economical way of alleviating the physiological effects of heat stress when environmental control is not feasible.
EN
An investigation is made on the effect of Hall currents on thermal instability of a compressible couple-stress fluid in the presence of a horizontal magnetic field saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, Hall currents, compressibility, magnetic field and porous medium is derived. For the stationary convection a couple-stress fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility, the magnetic filed and couple-stress parameter have stabilizing effects on the system whereas Hall currents and medium permeability have a destabilizing effect on the system, but in the absence of Hall current couple-stress has a destabilizing effect on the system. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field porous medium and Hall currents which were non-existent in their absence.
19
Content available remote Ultrasonic assisted friction stir processing of 6063 aluminum alloy
EN
An ultrasonic vibration setup has been designed and fabricated to make a comparative study between conventional frictions stir processing and ultrasonic assisted friction stir processing. Effects of ultrasonic vibrations on rotational speeds as well as processing speeds are studied. A series of experiments are performed to determine effect of ultrasonic vibrations. From the experimental results, it is seen that ultrasonic vibrations help in generating high heat in the stirred zone of friction stir processing which causes intense plastic deformation and improves material flow. By using the ultrasonic vibrations, higher hardness and tensile strength of friction stir processed joints are evident. Further axial force and transverse force reduction is also visible in case of ultrasonic assisted friction stir processing.
EN
Cloud computing is a business model with high degree of flexibility, scalability in providing infrastructure, platform and software as a service over the internet. Cloud promises for easiness and reduced expense to service providers and consumers. However, a lack of trust between these two stakeholders has hindered the universal accep¬tance of cloud for outsourced services. In this paper, a fuzzy based trust management system is proposed to facilitate cloud consumers in identifying trustworthy providers. The performance of the proposed system is validated through a simulation using CloudAnalyst and Simulink.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.