Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 30

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The Polish Geological Institute (PGI) was established in 1919 according to the act of the Polish Parliament. Four departments made up the structure of PGI at that time, and one of them was Department of Hydrology. The first head of this Department was Prof. Dr. Romuald Rosłoński, also the professor of the Lwów Technical University. He is recognized as a founder of the Polish hydrogeological school. The term hydrogeology was used in the Polish literature 120 years ago, but has slowly been implemented in science as a separate research field. In the period of time between the First and Second World War the PGI team of hydrogeologists dealt with groundwater resources and water supply, hydrogeological cartography, groundwater geochemistry and hydraulic properties of rocks hosting aquifers and aquitards, and water balances of drainage basins. Hydrogeology at that time was closely connected with regional geology, tectonics and petrology on the one hand and with mining activity and civil engineering on the other hand. After the World War II in 1949, the Section of Hydrogeology was established as a part of the Geological Institute. In 1953 this was renamed the Department of Hydrogeology, with the authorization for scientific activity. The scope of this activity encompassed regional hydrogeological recognition, cartography, hydrogeology of ore deposits and mining, geophysical logging in hydrogeology and drilling diagnosis. Mathematical modeling of groundwater flow started in this Department with the physical, analog simulation in the late 60s. of the 20th century. Results of the regional investigation of groundwater occurrences and geochemistry were presented in many hydrogeological maps prepared under the guidance of Professor C. Kolago. Groundwater resources were estimated both in the regions and the whole country by the team led by Professor B. Paczyński as a head and an editor. The brines, mineralized and thermal groundwaters were identified by this Department in close cooperation with branches of the PGI under direction of B. Paczyński, Z. Płochniewski and J. Dowgiałło from the Polish Academy of Sciences. The alteration and rise of the hydrogeological studies in the PGI took place at the beginning of 2000 due to the twin projects resulted from Poland’s accession to the European Union. There was little time for the EU directives implementation, especially for Water framework directive (FWD) and integrated water resources management to be introduced in practice. To meet these needs, the state hydrogeological survey (SHS) was organized in the PGI. This survey has been established according to Water Law Act from July 18 of 2001. The SHS imposed new duties resulting from the EU Groundwater Directive (2006/118/EU) on the protection of groundwater against pollution and deterioration (Official Journal UE, L 372 from 27.12.2006). There are legal, organizational and research tasks within the monitoring network and water management planning projects, which projects that belong to duties of the SHS. The main tasks of this survey include: groundwater monitoring organization and control and quality and geochemistry control of groundwater resources within groundwater bodies, gathering of hydrogeological data in data banks, analysis of current data and forecast elaboration, documentation of groundwater resources, publication of maps, guidebooks etc. This is the current activity of the hydrogeological team of the Polish Geological Institute.
PL
Sposoby przedstawiania lokalnych warunków hydrogeologicznych w dokumentacjach geologicznych złóż kruszywa naturalnego oraz w projektach zagospodarowania złóż są najczęściej bardzo uproszczone z punktu widzenia wymagań określonych w raportach ocen oddziaływania na środowisko. Dotyczy to zwłaszcza prognoz zmian ilości zasobów wodnych; stanów i przepływów wód podziemnych, zasięgu oddziaływań odwodnień złóż, czasu migracji zanieczyszczeń oraz zmian jakości wód podziemnych, ich chemizmu i podatności na zanieczyszczenia z powierzchni terenu w wyrobiskach górniczych. Istnieje zatem konieczność rozszerzenia zakresu badań wód podziemnych i warstw wodonośnych na etapie rozpoznawania i dokumentowania złóż kruszywa, które na Niżu Polskim mają szereg wspólnych cech litogenetycznych, występują w podobnych warunkach hydrologicznych i hydrogeologicznych, a ich eksploatacja uwarunkowana jest podobnymi ograniczeniami środowiskowymi. Odpowiedzialna (zrównoważona) eksploatacja złóż i poprawne rozpoznanie warunków występowania wód podziemnych, połączone z ich monitoringiem pozwoli również na optymalną rekultywację terenów po zakończeniu wydobycia piasków, pospółek i żwirów.
EN
Documentation of natural aggregate deposits and projects of deposits development, used for the environmental impact assessment reports elaborations have very limited data that refer do groundwater changes forecasts. These forecasts comprises groundwater resources changes, lowering of groundwater table, changes of groundwater flows, extends of depression cone, estimation of vertical flow time from the surface do the aquifer, and also estimation of groundwater quality changes in time, as water chemical composition and vulnerability of groundwater. There is in need of hydrogeological investigation and observation implementation to documentation and project development of natural aggregate deposits in bigger range. These deposits have similar lithogenetic features, occur in similar hydrogeological and hydrological condition and their exploitation has the same environmental limitation. Sustainable (responsible) exploitation of sand and gravel deposits and proper hydrogeological condition recognition with groundwater monitoring observation enables also good land reclamation after the end of natural deposit exploitation.
EN
During the last nine years, the 133 main groundwater reservoirs in Poland (MGR) have been documented; these were published last year. Some of these are situated in the coastal zone of the southern Baltic Sea. MGR numbers 111 and 112 are in the Gdańsk area and are discussed in the present paper. The study area is situated on the border region of the moraine plateau of the Cashubian Lakeland, the western part of the Vistula River delta plain and the Bay of Gdańsk. The area of the main groundwater reservoir in no. 112 is developed in Quaternary strata and referred to as Żuławy Gdańskie; it comprises predominantly the city of Gdańsk and slightly exceeds 100 km2. There is also a Cretaceous aquifer, rich in groundwater resources, which is named MGR no. 111, beneath the Quaternary reservoir mentioned above. The area studied and modelled totalled 364 km2, on account of the hydraulic connection between these aquifers. Methods of hydrogeological research, groundwater flow simulations, resources calculation are outlined in the present paper.
EN
During the construction of mathematical models for mapping hydrogeological conditions it is necessary to apply simplifications, both in the geological structure and in hydrogeological parameters used. The present note discusses problems surrounding the mapping of glaciotectonic disturbances that occur in the northern part of Wolin Island (northwest Poland). For this part of the island, a direct outflow of groundwater towards the Baltic Sea basin has been determined on the basis of geophysical survey results. An important feature in the hydrogeological conditions here is the isolation of groundwater from both the Baltic Sea and Szczecin Lagoon by clay with a Cretaceous xenolith. Such a geological structure explains the presence of perched water at considerable heights in zones close to the cliffs, without any significant hydraulic connection with surrounding reservoirs. Hydrogeological conditions of Wolin Island have been modelled using the Visual MODFLOW package v.4.2. In the vertical section, these conditions can be simplified to one aquifer (Pleistocene-Holocene), in which two aquifers can be distinguished. In a large part of the island, these remain in mutual hydraulic contact: layer I – upper, with an unconfined aquifer, and layer II – lower, with a confined aquifer, locally an unconfined one. The schematisation of hydrogeological conditions adopted here has allowed to reproduce present groundwater dynamics in the study area.
EN
The Warsaw region has opportunity to utilise geothermal energy for heating and recreation. Lower Cretaceous and Lower Jurassic aquifers are the most prospective for the utilisation of this renewable energy. The heat flow value is low in this region and does not exceed 60 mW/m2. The hydrogeological factor of exploitation wells is the permeability of the aquifers and possibility of thermal water flow. The active porosity at a depth of 3000 m is too low for groundwater abstraction. Investments in geothermal installations are not profitable and are not supported by local communities. Thus, the investment in geothermal installation bears a significant economic risk. Expected Monetary Value ( EMV) is the proposed method for evaluation of profitable expected economic effect. The hazards of economic loses or yield of profit are the basis for the decision makers.
PL
Termin zasoby wód podziemnych wprowadzono do hydrogeologii ponad 100 lat temu przez analogię do stosowanego w geologii złóż pojęcia zasobów kopalin stałych. Określenie to wykorzystano na potrzeby planowania planowania przestrzennego i inwestowania w budowę ujęć wód podziemnych. Dyskusja na temat zasobów wód podziemnych jest ściśle związana z wprowadzaniem nowych metod badawczych w hydrogeologii – najpierw metod analitycznych, następnie metod wykorzystujących modele fizyczne, a obecnie modele numeryczne. Wskazane w Ramowej Dyrektywie Wodnej zasady zintegrowanego zarządzania zasobami wodnymi i ekologiczne potrzeby wodne ekosystemów są przyjęte do obowiązujących planów gospodarowania wodami w dorzeczach i regionach wodnych. Porównanie wielkości dostępnych do zagospodarowania zasobów wód podziemnych z ich aktualnym poborem jest podstawą zrównoważonego gospodarowania rezerwami tych wód. Wielkość zasobów zwykłych wód podziemnych możliwych do zagospodarowania, rozumianych jako suma zasobów dyspozycyjnych (21,4 mln m3/d) i perspektywicznych (15 mln m3/d), wynosi w Polsce ok. 36,4 mln m3/d (wg stanu rozpoznania na 31.12.2015 r.)
EN
The term “groundwater resources” was introduced to hydrogeology from economic geology similarly to the resources of ore bodies almost a hundred years ago. It has been used for the need of physical planning, investment in new water intakes, and water management. Discussion on the groundwater resources started in the past after implementation of new methods of their evaluation, e.g. analytical approaches, and physical and then numerical modelling techniques. The ecological aspects of water demand, indicated in the Water Framework Directive, oblige the EU countries to introduce a new idea for the estimation of groundwater resources. This idea is also presented in the water management plans for river catchment areas. Distribution of available groundwater resources in the country and comparison with the groundwater exploitation is the background of proper, sustainable management of its resources. Available groundwater resources of the country, understood as a total amount of disposable and prospective groundwater resources, is 36.4 million m3/day (as of December 31, 2015), including 21.4 million m3/day of disposable resources, and 15 million m3/day of estimated prospective resources.
7
Content available remote Wartości progowe stanu chemicznego JCWPd a klasyfikacja jakości wód podziemnych
EN
The paper deals with implementing water directives of the European Union and making them consistent with national regulations. It has been indicated how the existing national law (Regulation of the Ministry of Environment, July 23, 2008) attaches the threshold values of good chemical status in EU directives to the national quality classification. Advantages, disadvantages and consequences of leaving them together, as well as a proposal of their disentanglement have been given.
8
Content available remote Problem zasobów wód podziemnych
EN
The term of groundwater resources was introduced to hydrogeology from economic geology similarly to the resources of ore bodies almost hundred years ago. It results years ago from the needs of physical planning, investment in new water intakes and water management. Discussion on the groundwater resources was started in the past after new method of their evaluation, e.g. analytical approaches, physical and then numerical modeling techniques implementation. The ecological aspects of water demands obliges to introduce new idea of quantities of groundwater resources estimation. This idea is also presented in the Water Framework Directive and in the water management planes in the water catchment areas.
9
Content available remote Badania hydrogeologiczne wybrzeża Bałtyku Południowego
EN
The coastal area of the Southern Baltic is the limit of two different hydrogeochemical environments – fresh and brackish water of sea intrusion and salt ascending water from deep Mesozoic strata. Recognition of these waters occurrence and their origin started about hundred years ago in the Gdańsk region. The Vistula delta plane was the first area of the detailed studies. At that time two sources of the salt waters have been stated – salt water ascension from the Mesozoic strata in the central part of the delta and remaining sea water from the early stages of the delta evolution. The last mentioned belongs to the young relic sea water from the Littorina time. More detailed investigations along the polish Baltic coast has been started in 70. of XX century. The new investigation methods were implemented during last 40 years, especially geoelectrical logging, remote sensing, isotopic and chemical composition examination of water samples, noble gas dissolved in groundwater. The numerical simulation models has been applied and also groundwater chemical modeling is adopted in hydrogeological practice.
PL
W artykule przedstawiono zagadnienie wybranych wpływów antropogenicznych najważniejszych działów gospodarki w kraju na jakość wód podziemnych i powierzchniowych. Słaby stan ilościowy jednolitych części wód może skutkować zwykle słabym stanem chemicznym i ekologicznym. Artykuł stanowi część materiału przygotowanego w zespole Komitetu Badań nad Zagrożeniami Związanymi z Wodą [2].
EN
The article presents the issue of chosen anthropogenic effects of the most important branches of the national economy on the quality of underground and surface waters. Low quantity of homogenous water bodies usually results in poor chemical and ecological status. The article constitutes part of a study prepared by a team of the Committee on Water-related Risk Studies [2].
PL
Zadania państwowej służby hydrogeologicznej (PSH) w Państwowym Instytucie Geologicznym – Państwowym Instytucie Badawczym wynikają z aktów prawnych w randze ustaw, strategii i programów a także rozporządzeń i zarządzeń ministerialnych. Powołując państwową służbę hydrogeologiczną ustawodawca przekazał jej obowiązki Państwa w zakresie wód podziemnych, co z jednej strony świadczy o wysokiej randze hydrogeologii, a z drugiej o dużym znaczeniu zasobów wód podziemnych dla społeczeństwa i gospodarki. Misją służby jest ograniczenie degradacji wód podziemnych w kraju oraz dążenie do zrównoważonego gospodarowania ich zasobami, stanowiącymi podstawę zaopatrzenia ludności w najwyższej jakości wodę pitną. Realizacja zadań państwowej służby hydrogeologicznej jest prowadzona pod nadzorem prezesa Krajowego Zarządu Gospodarki Wodnej. Środki finansowe są wypłacane przez Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej na podstawie zawartych umów dwustronnych z PIG-PIB. Zakres prac państwowej służby hydrogeologicznej określa ustawa Prawo wodne z dnia 18 lipca 2001 r. oraz Rozporządzenie Ministra Środowiska z dnia 6 listopada 2008 r. w sprawie standardowych procedur zbierania i przetwarzania informacji przez państwową służbę hydrologiczno-meteorologiczną oraz państwową służbę hydrogeologiczną.
EN
Projects of Polish Hydrogeological Survey (PSH) in Polish Geological Institute – National Research Institute – resulting from acts established by Parliament and dispositions given by the Government and Minister of Environment. The PSH was brought into being by Water Act Law, that means duties of state in the subject of groundwater resources have been delivered to specially organized survey, thanks to the important role of groundwater for the country and good status of hydrogeologists. Restraining groundwater deterioration and sustainable management of groundwater resources, main source of potable water are the mission of PSH. Activities of PSH is under control of President of the National Water Management Board (KZGW). The budged comes from the National Found of Environment Protection and Water Management in forms of bilateral contracts between PGI and National Found for approved projects. The scope of tasks be undertaken by PSH resulting from the Water law and disposition of the Minister of Environment dated 6th November 2008 dedicated to standard procedures of data collection and processing by hydrological-meteorological survey and hydrogeological survey of Poland.
12
Content available remote Specyfika monitoringu granicznego wód podziemnych
PL
Monitoring wód podziemnych w strefie przygranicznej R.P. jest prowadzony w celu zapewnienia ich ochrony, wzajemnie skoordynowanego i racjonalnego użytkowania wód granicznych, poprawy ich jakości, a także zachowania i odnowy ekosystemów od wód zależnych, w tym ich różnorodności biologicznej. Oddziaływania transgraniczne wynikają z funkcjonowania: drenaży wyrobisk górniczych, hydrotechnicznych urządzeń piętrzących, eksploatacji dużych komunalnych ujęć wód podziemnych, oczyszczalni i miejsc zrzutu ścieków, pracy dużych systemów melioracyjnych i nieznanych innych oddziaływań na stan ilościowy i chemiczny wód podziemnych. Sieć obserwacyjno-badawcza wód podziemnych w strefach przygranicznych może spełniać istotną rolę w ocenach stanu wód i w prognozowaniu zmian, zwłaszcza w regionach, w których istnieje dopływ wód podziemnych z krajów sąsiednich lub istnieje znaczące oddziaływanie podmiotów gospodarczych na środowisko.
EN
Groundwater monitoring along the polish borders is carried out for the purpose of water protection, correlated water management with neighbouring countries, improving the state of groundwater and water depended ecosystems including biodiversity. Transboundary impacts on groundwater resources originate due to dewatering of open casts, dams construction, big groundwater intakes exploitation, sewage discharges, water supply in agriculture and other unknown sources influencing the state of GWB. The results of groundwater monitoring network can support the assessment of GWB state and in the forecasts of changes of regional transboundary flows. There is also possible to recognize the industrial or agricultural impacts on groundwater coming up from neighbouring countries.
PL
Przed podjęciem decyzji o modernizacji systemu zaopatrzenia w wodę aglomeracji gdańskiej konieczna okazała się szczegółowa analiza uwarunkowań formalnoprawnych gospodarowania zasobami wodnymi. Artykuł prezentuje najważniejsze wyniki tych prac. Na podstawie wyników, publikowanych i zawartych w hydrogeologicznych dokumentacjach badań, dokonano oceny zasobów wód podziemnych dostępnych do zagospodarowania przez ujęcia miejskie Gdańska i Sopotu. Szczegółowo przeanalizowano różne warianty zaopatrzenia w wodę. Zarekomendowano dywersyfikację źródeł pozyskiwania wody i wykazano zalety takiego rozwiązania.
EN
Detailed analysis of legal acts was done before making the decision of Gdańsk water supply system modernization. The paper presents the main results of this analysis. The groundwater resources exploited by the municipal water intakes of Gdańsk and Sopot were recalculated based on published papers and hydrogeological documentations. Different scenarios of water supply have been developed for the future water management in these cities. A diversified water supply system from many sources is recommended and the profits are presented.
14
PL
Systemy krążenia wód podziemnych w rejonie Zalewu Kamieńskiego zależą od budowy geologicznej, ukształtowania terenu a także ascenzji solanek i ingresji wód morskich. Do obliczenia czasu przepływu wody w rozpatrywanych warstwach w ośrodku o znanej porowatości aktywnej posłużono się programem TFS opracowanym przez K. Burzyńskiego. Model przepływu wód podziemnych opracowano dla przekroju hydrogeologicznego wzdłuż linii Międzywodzie–Kamień Pomorski–Golczewo. Czasy przepływu i wymiany wód podziemnych obliczono dla dwóch przypadków, pierwszy dla okresu przed transgresją litorynową (7500 lat temu) oraz drugi – dla współczesnych warunków przepływu wód podziemnych. Czas wymiany wód podziemnych w rejonie Zalewu Kamieńskiego jest obecnie prawie dwa razy dłuższy niż przed tą transgresją.
EN
The study area is located in the north-western part of the Pomeranian sector of the Mid-Polish Anticlinorium. Factors influencing groundwater circulation systems in the area of the Kamieński Lagoon depend on the geological structure, ascension of brines from Mesozoic strata and the sea water encroachment. The calculation of groundwater flow time along the stream line was carried out for rocks of specified active porosity using a mathematical program developed by K. Burzyński. The groundwater flow model was used for a hydrogeological cross-section line along: Międzywodzie–Kamień Pomorski–Golczewo in the south. The numerical calculations of the flow path from the recharge area to the discharge base level of the present Baltic Sea and the base level in the beginning of the Littorina Sea (7500 years BP) were done to define the groundwater flow time. It has been stated that the current flow time in the fresh groundwater circulation system in the area of the Kamieński Lagoon is nearly twice longer than it was 7500 years ago.
15
Content available remote Założenia do modernizacji monitoringu wód podziemnych
PL
Harmonizacja krajowych aktów prawnych z dyrektywami Unii Europejskiej oraz wprowadzenie szeregu przepisów wykonawczych, głównie Ministerstwa Środowiska, wpłynęły na konieczność zmian i modernizacji monitoringu wód podziemnych. Naczelną zasadą nowej polityki wodnej Unii, wyrażonej w Ramowej dyrektywie wodnej (RDW), jest ochrona zasobów wód podziemnych i zależnych od nich ekosystemów lądowych i wód powierzchniowych, przekładająca się w praktyce na utrzymanie dobrego stanu ilościowego i jakościowego zasobów wód w jednolitych częściach wód podziemnych (JCWPd). W obszarach, gdzie stwierdzono słaby stan JCWPd konieczne jest opracowanie planów i podjęcie działań zmierzających do poprawy stanu wód. Kontrola stanu JCWPd i raportowanie wyników monitoringu do Komisji Europejskiej wymagają kontynuacji procesu modernizacji dotychczasowego systemu monitoringu wód podziemnych. Wiąże się z tym zwiększenie liczby punktów obserwacyjnych i określenie ich reprezentatywności oraz wiarygodności wyników pomiarów. Udoskonalenia wymagają metody wyznaczania trendów zmian i prezentacji wyników pomiarów. Wprowadzane nowe wskaźniki zanieczyszczeń, na przykład pestycydy, PCB i związki organiczne, wymagają wdrożenia nowych metod ich detekcji i dokładnych metod analityki chemicznej. Oprócz badań laboratoryjnych modernizowane są także metody pomiarów, badań i opróbowań terenowych. Nowe zadania monitoringu wód podziemnych wynikają także z innych dyrektyw, jak: azotanowa, powodziowa lub INSPIRE. Ostatnia z wymienionych jest szczególnie istotna, gdyż zawiera delegacje do RDW i wymaga opracowania nowego sposobu gromadzenia danych monitoringu, umożliwiającego wymianę informacji gromadzonych w bazach danych, między krajami członkowskimi UE. Dotyczy także współpracy w odniesieniu do monitoringu transgranicznych JCWPd.
EN
Implementation of Water Framework Directive into the Polish legal acts and executive regulations, mainly by Ministry of Environment, has imposed changes into the Polish groundwater monitoring system. The leading principle of new European water policy is the protection of national groundwater resources (groundwater body – GWB). Therefore, the good chemical status and good chemical composition of groundwater in GWB require detail hydrogeological recognition of the Country. Action plans and mitigation operations referring to GWB in case of their poor chemical status should be undertaken based on groundwater monitoring data. Assessments of GWB’s status and reporting of these results to the European Commission shall be undertaken in line with guidance documents prepared by the Commission, specifically Guidance Document no 18, which requires also assessments of groundwater monitoring networks, their representativeness and statistical evaluation of the data, e.g. calculation of trend lines. New indicators of groundwater pollution, as pesticides, PCB and organic compounds have been introduced into assessments and these demands defining new analytical methods that will be precise and relatively cheap. Besides the chemical laboratory methods, new methods of in situ examinations, sampling procedures and construction of observation points should be implemented. New goals of groundwater monitoring are arise from other EU directives, as “nitrate”, “flood” and INSPIRE directive. The last one, implemented at present, mainly refers to the gathering of monitoring results, storing the data in the data bank and affords possibilities of data exchange among the EU member countries. It is especially substantial in case of transboundary aquifers.
PL
W czasach globalizacji i będącej bezpośrednim następstwem tego procesu wzrastającej konkurencji pomiędzy różnymi sektorami gospodarki o dostęp do zasobów naturalnych, w tym czystej wody, zagadnienia współpracy transgranicznej nabierają coraz większego znaczenia. Ponad dziesięcioletnia historia wdrażania Ramowej Dyrektywy Wodnej (RDW) na obszarze krajów członkowskich UE oraz związane z tym doświadczenia, nakazują przyjrzeć się problematyce zarządzania wodami transgranicznymi wzdłuż wschodniej granicy UE. Podjęcie partnerskiej współpracy w dziedzinie ujednolicenia metodyki zarządzania wodami z Białorusią, Rosją i Ukrainą, jak również bardziej egzotyczną z punktu widzenia Polski Mołdawią może w przyszłości przynieść korzyści znacznie szersze niż tylko w zakresie ochrony środowiska.
EN
In times of globalization and increasing competition between different sectors of the economy within the access to natural resources, including clean water sources what is a direct consequence of the process where all borders disappear, the transnational issues are becoming increasingly important. More than 10 years history of Water Framework Directive implementation in EU and all experience allow to direct a look at transboundary water management issues along the east EU border. Adopting a partnership in the field of water management unification methodology with Belarus, Russia and Ukraine, as well as more exotic country from the perspective of Poland Moldova, in the future may bring much wider benefits than just environmental protection.
17
Content available remote Polish Hydrogeological Survey-the response to European Directive implementation
EN
TheWater Framework Directive (WFD) established in 2000 expresses a general EU policy orientated towards protection, sustainable utilization and improvement of the quality of water bodies. Poland signed the accession treaty with the European Union in 2004. It was automatically obliged to comply with tasks specified in existing European directives. It was for that reason that in 2002, when Poland was preparing for accession to the EU, Poland transposed the requirements of the EU Water Framework Directive into the Polish legal document concerning the State’s water policy known as theWater Act. Fulfilment of the WFD’s objectives was defined in theWater Act through works of the Polish Hydrogeological Survey (PHS) established in 2002 within the Polish Geological Institute, following implementation of the Water Act. Since 2007, PHS received new duties resulting from the EU Groundwater Directive (2006/118/EU) on the protection of groundwater against pollution and deterioration (Official Journal EU L 372 from 12.12.2006). There are also hydrogeological obligations that result from another piece of national legislation called the Geology and Mining Act regarding thermal, saline and mineral waters, which are classified in Poland as mining resources. Fresh water resources are within the scope of the Water Act. At present, we observe a significant increase in usage of these resources, especially for geothermal energy and for recreational and therapeutic uses. Nevertheless, even curative waters must be considered in a systematic way, in connection with surface water and shallow groundwater, as their availability is controlled by infiltration from shallow groundwater or directly from infiltrating rivers and streams. Groundwater bodies delineated by the PHS have to be monitored and results of this monitoring are further transposed to river basin action plans. Some groundwater bodies are situated along the Polish boundary zones and these have to be controlled by both sides: PHS and the corresponding services of the neighbouring countries. The most important task for both sides is to achieve good groundwater status for trans-boundary groundwater bodies, water supplies for citizens and water dependent ecosystems. There are legal, organizational and research tasks within the monitoring schemes and water management planning projects, which belong to the duties of the PHS.
18
Content available remote Evolution of Polish hydrogeology
EN
In Poland, hydrogeology as a separate scientific discipline came into being at the end of the 19th century. The first geologists were interested in springs, saline, mineralised waters of therapeutic use and dewatering of mines. Until World War I, in the early stages of hydrogeological developments, a different attitude towards groundwater problems was clearly notable in all three annexed Polish territories. The next stage of the development of Polish hydrogeology is dated to the years 1918-1939. In those times, the major focus of hydrogeological investigations was on building structures to extract artesian groundwater; mineral groundwater in the Polish spas; building municipal water intakes; and on Quaternary aquifers, widespread in Poland. Early hydrogeological handbooks were published at those times. The contemporary stage of Polish hydrogeology started in 1945, after World War II. In the early 1950s, the Department of Hydrogeology and Engineering Geology was established at the Central Board of Geology (CUG in Polish), which belonged to the Polish government as a separate ministry up to 1970. Hydrogeological companies with technology and development sections were founded in big cities. Nowadays, academic centres exist in Warsaw, Cracow, Wrocław, Gdańsk, Sosnowiec, Poznań, Kielce and Toruń. About 1400 persons with academic diplomas, 160 doctors and 22 professors of hydrogeology are active at present in the field of hydrogeology. The principal fields of Polish hydrogeology comprise the following: mine dewatering, recognition of groundwater resources and their protection, construction and exploitation of water intakes, hydrogeological cartography, mineral and thermal water resources, regional hydrogeology for physical planning, groundwater modelling and groundwater pollution, migration of pollutants and forecasting of groundwater changes. Up to the late eighties, political censorship was the main difficulty for the development of Polish hydrogeology, especially in publications related to sensitive information of groundwater occurrence and resources.
19
Content available remote Hydrogeological aspects of Quaternary sediments in Poland
EN
The major groundwater resources in Poland come from Quaternary aquifers. Rich in groundwater are structures of contemporary river valleys and of buried valleys, that comprise sands and gravels of glaciofluvial origin. Groundwater aquifers cover water demands of ca. 2.1 km3 annually. 65% of drinking water in Poland comes from groundwater intakes. Recharge zones of these aquifers are usually located in highlands – moraine plateau, and discharge zones are located in deep and wide river valleys. The average thickness of fresh water aquifers is about 200 m in Poland. The fresh water was stated even over 1,000 m depth in some places, but in the Mesozoic strata. The thickness of fresh water aquifer reduces, however, to only few metres in areas of salt water ascension or intrusion along the Baltic coast area. Recognition of groundwater circulation systems is the basis for delineation of a groundwater body (GWB). In Poland, the most productive parts of groundwater bodies that allow to abstract water at a rate grater that 10,000 m3/day, are defined as Major Groundwater Basins (MGWBs). The mean residence time of groundwater in Quaternary aquifers in Poland is estimated at some 50 yrs, whereas the residence time of water in sluggish circulation systems in deeper strata exceeds 104 yrs. Quaternary aquifers situated close to the surface area are vulnerable to municipal and agricultural pollution. The geogenic pollution such as sea water intrusion or ascension of brines are observed mainly at lowlands along the Baltic coastline, in vicinity of water intakes, or on an axial zone of anticlinoria. Trends in lowering a groundwater table are noted in the central part of the Polish lowlands and are associated with climatic variability or lignite opencast dewatering.
20
Content available remote Uwarunkowania i zadania w projekcie strategii gospodarowania wodami w Polsce
PL
Zgodnie z decyzją Senatu RP z 2007r. gospodarka wodna wymaga obecnie opracowania nowej strategii i oceny strategicznej jej skutków. W 2009 r. powstał projekt narodowej strategii gospodarowania wodami, w którym przyjęto jako cele strategiczne zobowiązania Polski wynikające z traktatu akcesyjnego do UE oraz obowiązujących dyrektyw, umów międzynarodowych i ustaleń zawartych w programach operacyjnych. Najważniejszym celem jest jednak osiągnięcie i utrzymanie dobrego stanu wód powierzchniowych i podziemnych oraz ekosystemów wodnych i od wody zależnych, a także zaspokojenie potrzeb wodnych zwłaszcza ludności. We wszystkich wymienionych zadaniach i zobowiązaniach istnieje problem wód podziemnych zarówno w sferze organizacyjno-prawnej, merytorycznej, jak i kontrolnej oraz planistycznej. Większość zadań wynika z dwóch ustaw: Prawa wodnego i z Prawa geologicznego i górniczego. Aktualnym i pilnym zadaniem jest opracowanie planów gospodarowania wodami w dorzeczach.
EN
New National Strategy of Water Management in Poland was elaborated in 2009 by staff under professor J. Kindler leadership according to decision of Polish Parliament from 2007. The strategic goals of water management up to 2030 were taken from the accession treaty to the European Union and European directives as well as from international agreements of Polish Government signed by our neighbouring countries. The most important task is the good water status of water bodies and water supply of communities. The groundwater problems are emerged in almost all mentioned goals and tasks. There are the low and organizational tasks and also technical, research, monitoring and planning problems. The most tasks are described in the Water Law Act and Act of Geology and Mining. The water management planes of the river basins are the current and urgent problems under elaboration and they have to be completed and signed by the Government till December 2009 yr.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.