Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 106

Liczba wyników na stronie
first rewind previous Strona / 6 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 6 next fast forward last
PL
Pożary w lasach, poza stratami dla gospodarki człowieka, zmieniają drastycznie właściwości abiotyczne i biotyczne środowiska leśnego zarówno w czasie jak i przestrzeni. W wyniku pożaru obserwuje się spadek liczebności oraz różnorodności taksonomicznej mikro- i mezofauny glebowej co ma niebagatelny wpływ na kształtowanie metabolizmu ekosystemów glebowych. Celem podjętych badań była ocena dynamiki zmian liczebności mikroorganizmów i mezofauny glebowej w glebie i ściółce w zależności od intensywności pożaru jak również od okresu czasu po pożarze. Badania przeprowadzono w północno-wschodniej części Kampinoskiego Parku Narodowego. Badaniami objęto obszary wypalone – powstałe na skutek „mocnego”(Mp) i „słabego”(Sp) pożaru, oraz sąsiadujące z nimi obszary niewypalone – kontrolowane w 2., 14. i 28. miesiącu po pożarze który miał miejsce w czerwcu 2015 r. Na podstawie uzyskanych wyników stwierdzono, że intensywność pożaru jak również czas upływający od żywiołu kształtuje liczebność populacji bakterii i grzybów mikroskopowych oraz mezofauny w glebie. Wyniki badań wskazują na powolną regenerację zespołów mikroorganizmów i mezofauny na pożarzyskach. Na tempo regeneracji i różnorodność gatunkową wpływ mają obszary niewypalone sąsiadujące z pożarzyskiem.
EN
Fires in forests apart from human losses for the economy, drastically change the properties of abiotic and biotic forest environment in both time and space. As a result of the fire, there is a decrease in the number and taxonomic diversity of soil microorganisms and mesofauna, which has a significant impact on the formation of metabolism of soil ecosystems. The aim of this study was to evaluate the dynamics of changes in the number of microorganisms and soil mesofauna in soil and litter depending on the intensity of the fire, as well as the period of time after the fire. The study was conducted in the north-eastern part of the Kampinos National Park. The study included areas burnt – resulting from a "strong" (Mp) and "weak" (Sp) fire, and the adjacent areas unfired – controlled 2, 14 and 28 months after the fire that took place in June 2015. Based on the obtained results, it was found that the intensity of the fire, as well as the time elapsing from the fire, shapes the population of bacteria, microscopic fungi and mezofauna in the soil. The results of the research indicate slow regeneration of microorganism and mesofauna assemblages during firefighting. Regeneration and species diversity are affected by unburnt areas adjacent to a fire.
EN
This paper presents an original information system supporting the management of an agricultural holding codenamed AGMS (Agro-Management System). This system was created in C# language, using ASP. NET MVC programming technology. The application database layer was supported by SQL Server and Entity Framework technology. The creation of the program's views enabled such languages as HTML 5, CSS3 along with Bootstrap library and Javascript with dedicated Knockout.js library. The development of the system was preceded by an analysis of requirements, in accordance with software engineering procedures. The documentation created at this stage in the form of UML diagrams was prepared in Microsoft Visio. The AGMS program presented in this article is a developmental version, so all its functionalities are not yet fully implemented. The user can use the current version of the software to map fields, manage events related to individual fields and, among other things, obtain information on pests and weeds. The article also describes the concept of the final version of the program, which should include modules implementing simple methods of artificial intelligence in the field of image recognition and decision support.
PL
Zaprezentowano autorski system informatyczny wspomagający zarządzanie gospodarstwem rolnym o nazwie kodowej AGMS (Agro-Management System). System ten został wytworzony w języku C#, w technologii programistycznej ASP.NET MVC. Warstwa bazodanowa aplikacji została obsłużona przez SQL Server oraz technologię Entity Framework. Wytworzenie widoków programu umożliwiły takie języki jak HTML5, CSS3 wraz z biblioteką Bootstrap a także Javascript z dedykowaną biblioteką Knockout.js. Opracowanie systemu zostało poprzedzone analizą wymagań, zgodnie z procedurami inżynierii oprogramowania. Powstała na tym etapie dokumentacja w postaci diagramów UML została przygotowania w programie Microsoft Visio. Program AGMS prezentowany w niniejszym artykule jest wersją rozwojową, a zatem jego wszystkie jego funkcjonalności nie są jeszcze w pełni zaimplementowane. Użytkownik korzystając z aktualnej wersji oprogramowania ma możliwość mapowania pola, zarządzania zdarzeniami dotyczącymi poszczególnych pól, a także m.in. może zasięgać informacji o szkodnikach czy chwastach. W pracy opisano także koncepcję finalnej wersji programu, w której powinny znaleźć się moduły implementujące proste metody sztucznej inteligencji w zakresie rozpoznawania obrazów i wspomagania podejmowania decyzji.
EN
In recent years, there has been a growing interest in the use of modern IT tools in agricultural engineering. Both image analysis methods and artificial neural networks, designed to reproduce the work of the human brain, serve to build predictive and classification models, highly useful for modern agriculture. Correct identification of both the seed material and the produced crops becomes a priority of agricultural engineering, ensuring adequate efficiency and cost-effectiveness of agrotechnical operations. This article presents a project whose aim was to develop an effective neural model for qualitative identification of the variety of stored consumer potato tubers by using input data obtained in the process of digital image analysis. The designed and created artificial neural network model (multilayer perceptron), using informations in the form of selected graphic descriptors, classifies three selected varieties of edible potato (Denar, Gala, Vineta).
PL
W ostatnich latach dostrzec można wzrastające zainteresowanie wykorzystywaniem nowoczesnych narzędzi informatycznych w inżynierii rolniczej. Zarówno metody analizy obrazu, jak i sztuczne sieci neuronowe, mające odwzorowywać pracę ludzkiego mózgu, służą budowaniu modeli predykcyjnych i klasyfikacyjnych, wysoce użytecznych dla współczesnego rolnictwa. Właściwa identyfikacja zarówno materiału siewnego, jak i wytworzonych plonów, staje się priorytetem inżynierii rolniczej, zapewniając odpowiednią efektywność i opłacalność przeprowadzanych zabiegów agrotechnicznych. Niniejszy artykuł przedstawia projekt, którego celem było opracowanie efektywnego modelu neuronowego służącego do identyfikacji jakościowej odmiany magazynowanych bulw ziemniaków konsumpcyjnych przy użyciu danych wejściowych pozyskanych w procesie analizy obrazów cyfrowych. Zaprojektowany i wytworzony model sztucznej sieci neuronowej (perceptron wielowarstwowy), korzystający z informacji w postaci wybranych deskryptorów graficznych, klasyfikuje trzy wybrane odmiany ziemniaka jadalnego (Denar, Gala, Vineta).
EN
The aim of this work is to present a project of a network of wireless sensors for the monitoring of plantations in agriculture. The developed project can be used to automate the field irrigation process. The design of the field moisture control system was based on the WSN (Wireless Sensor Network) technology. A measuring element with necessary sensors was also designed for the project. The methodological part of the work includes the network design and the development of the concept of measuring device construction. The Advantech ADAM 2000Z series components were used for the wireless sensor network project.
XX
Celem niniejszej pracy jest prezentacja projektu sieci bezprzewodowych czujników dla potrzeb monitoringu plantacji w rolnictwie. Opracowany projekt może być wykorzystywany do automatyzacji procesu nawadniania pól. Projekt systemu kontroli stopnia uwilgotnienia pola został wykonany na podstawie technologii WSN (ang. Wireless Sensor Network). Na potrzeby projektu został również zaprojektowany element pomiarowy wraz z niezbędnymi czujnikami. Cześć metodyczna pracy obejmuje projekt sieci, oraz opracowanie koncepcji budowy urządzenia pomiarowego. Do projektu bezprzewodowej sieci czujników użyto komponentów firmy Advantech ADAM seria 2000Z.
EN
In this paper it has been described a computer system for the processing and analysis of two-dimensional digital images of evaluated pork half-carcasses. The AOPW (pol. Analiza Obrazu Półtusz Wieprzowych) image analysis system was created in C#, in Visual Studio 2015, using the AForge.NET library. The development of the application was preceded by a requirement analysis, according to the software engineering procedures. Documentation in the form of UML diagrams was developed in Microsoft Visio. The AOPW application is used to analyze and extract the characteristics of pork halfcarcasses contained in two-dimensional digital images acquired during the slaughtering process of pigs. The application may be a part of a new method for evaluating and classifying pig carcasses according to the applicable EUROP classification. The developed system was divided into two modules: the first for processing and filtering image, enabling e.g. edge and shape detection, sharpening and image binarization. The second allows for image analysis and acquisition of characteristics of pork half-carcasses - descriptors. The presented work was created within the research project of National Research and Development Center PBS3/B8/26/2015.
PL
W pracy zaprezentowano autorski system informatyczny służący przetwarzaniu i analizie dwuwymiarowych obrazów cyfrowych, poddawanych ocenie półtusz wieprzowych. System o nazwie Analiza Obrazu Półtusz Wieprzowych (AOPW) został wytworzony w języku C#, w pakiecie Visual Studio 2015, z użyciem biblioteki AForge.NET. Opracowanie aplikacji zostało poprzedzone analizą wymagań, zgodnie z procedurami inżynierii oprogramowania. Powstała na tym etapie dokumentacja w postaci diagramów UML została przygotowana w programie Microsoft Visio. Aplikacja AOPW służy do analizy i ekstrakcji cech charakterystycznych półtusz wieprzowych, zawartych na dwuwymiarowych obrazach cyfrowych pozyskanych w trakcie procesu uboju trzody chlewnej. Aplikacja może stanowić element nowej metody oceny i klasyfikacji półtusz wieprzowych według obowiązującej klasyfikacji EUROP. Opracowany system został podzielony na dwa moduły: pierwszy przetwarzający i filtrujący obraz, umożliwiający m.in. wykrywanie krawędzi i kształtów, wyostrzanie oraz binaryzację obrazu; drugi pozwalający na analizę obrazu i pozyskanie cech charakterystycznych – deskryptorów. Przedstawiona praca powstała w ramach projektu badawczego Narodowego Centrum Badań i Rozwoju PBS3/B8/26/2015.
EN
The purpose of this paper is to produce original software for calculating the GLCM matrix and its properties. Application mechanics is based on two AForge.Net library for image segmentation, and the Accord.Net library for calculating the GLCM matrix. The application mechanics have included the ability to calculate the GLCM matrix at the given accounts. The application is equipped with functions that calculate the properties of the matrix as a full complement of the problem. Generated matrix properties are saved to a CSV file, or added to an existing one according to user preferences. Digital images of rape leaves constitute a research material used in the work.
PL
Celem niniejszej pracy jest wytworzenie oryginalnego oprogramowania do obliczania macierzy GLCM, oraz jej właściwości. Mechanika aplikacji opiera się na dwóch bibliotekach AForge.Net do segmentacji obrazu, oraz biblioteka Accord.Net do obliczania macierzy GLCM. W mechanice aplikacji uwzględniono możliwość obliczania macierzy GLCM przy zadanych kontach. Aplikacja została wyposażona w funkcje obliczające właściwości macierzy, co pełni formę uzupełnienia zagadnienia. Wygenerowane właściwości macierzy zastają zapisane do pliku CSV, lub dopisane do już istniejącego wedle preferencji użytkownika. Materiałem badawczym wykorzystanym w pracy, są obrazy cyfrowe liści rzepaku.
EN
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
PL
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1.
EN
The quality evaluation is one of the most important stages of the production processes. The same as regards the beer production and its components: hop, yeast, malting barley and other ingredients. Presented project deals with the complex quality evaluation of malting barley used for malt production. Its main goal is to elaborate complete methodology for the identification of varieties, the level of contamination and other visual features of malting barley with the use of computer science technologies, such as neural image analysis.
PL
Jednym z najważniejszych etapów w procesie produkcyjnym jest ocena jakości. Podobnie jest w produkcji piwa i jego składników: chmielu, drożdży, jęczmienia browarnego i innych. Przedstawiony projekt dotyczy kompleksowej oceny jakości jęcz-mienia browarnego używanego do produkcji słodu. Jego głównym celem jest opracowanie kompletnej metodyki identyfikacji odmian, poziom zanieczyszczenia i innych wizualnych cech jęczmienia browarnego z wykorzystaniem technologii informatycznych opartych na neuronowej analizy obrazu.
EN
Image processing and analysis are one of the tools to achieve data coded in digital images. Development of these methods enables to gain more data coded in digital images, even those which are not visible to the human eyes. Therefore it is justified to create new computer systems appointed in functions and filters that support process of gaining new information coded in digital image. In this study system for classification of oocytes has been described. The cells are classified taking into account distribution of cortical granulae according to three-class scale. In addition, knowing the diameter of the follicle from which the oocyte was aspired and class of oocyte-cumulus complex, it is possible to determine developmental competence of oocyte.
PL
Przetwarzanie i analiza obrazu stanowią narzędzia do uzyskania danych zawartych w obrazach cyfrowych. Dzięki rozwojowi tych metod można uzyskać więcej informacji na temat danych zakodowanych w obrazach cyfrowych, nawet tych które nie są widoczne dla ludzkiego oka. Dlatego też uzasadnione jest tworzenie nowych systemów informatycznych wyposażonych w funkcje i filtry, które wspierają proces pozyskiwania informacji zakodowanych w obrazach cyfrowych . W pracy opisano system do klasyfikacji oocytów. Komórki są klasyfikowane pod względem rozmieszczenia ziaren korowych zgodnie z trójstopniowa skala. Ponadto, przy znajomości średnicy pęcherzyka, z którego został wyaspirowany oocyt i klasę kompleksu oocyt-kumulus, możliwe jest ustalenie w systemie kompetencji rozwojowej komórki jajowej.
EN
Numerous scientific and research centres are searching for solutions concerning the problem of quality classification of animal oocytes. Conducting such studies is purposeful, particularly in the context of constant attempts to improve the quality of food products, which depends on the breeding value of livestock. Therefore, searching for methods of stimulation of proper development of a larger number of animal oocytes, particularly in extracorporeal conditions, gains special importance. An increasing interest in assisted reproduction techniques resulted in searching for new, increasingly effective methods of quality assessment of mammalian gametes and embryos. The expected progress in the production of animal embryos in vitro is largely dependent on proper classification of obtained oocytes. The aim of this work was to develop a non-invasive method for the quality assessment of oocytes, performed on the basis of graphic information encoded in the form of monochromatic digital images obtained via microscopy techniques. The classification process was conducted based on the information presented in the form of microphotography pictures of domestic pig oocytes, using advanced methods of neural image analysis.
PL
Rozwiązaniem problemu klasyfikacji jakościowej oocytów zwierzęcych zajmuje się wiele różnych ośrodków naukowo-badawczych. Celowość prowadzenia takich badań jest uzasadniona szczególnie w kontekście ciągłego dążenia do podnoszenia jakości produktów żywnościowych, która jest pochodną wartości hodowlanej zwierząt gospodarskich. W związku z tym, istotnego znaczenia nabierają poszukiwania metod prowadzących do stymulowania prawidłowego rozwoju większej liczby zapładnianych oocytów zwierzęcych, zwłaszcza realizowanego w warunkach pozaustrojowych. Rosnące zainteresowanie technikami wspomaganego rozrodu stało się przyczyną poszukiwania nowych, coraz bardziej efektywnych metod oceny jakościowej gamet oraz zarodków ssaków. Oczekiwany postęp w produkcji zarodków in vitro zwierząt uzależniony jest w istocie od poprawnej klasyfikacji pozyskiwanych oocytów. Celem pracy było opracowanie bezinwazyjnej metody oceny jakościowej oocytów dokonywanej w oparciu o informację graficzną zakodowana w postaci monochromatycznych obrazów cyfrowych pozyskanych metodą mikroskopową. Proces klasyfikacji zrealizowano w oparciu o informację prezentowaną w formie zdjęć mikrofotograficznych oocytów świni domowej, wykorzystując w tym celu nowoczesne metody neuronowej analizy obrazu.
EN
Commonly recognized predictive abilities represented by selected ANN (Artificial Neural Networks) topologies are widely used in practice. They often support the decision-making processes that occur in agri-alimentary processing, such as milk production. The aim of the study was to use ANN as a predictive tool in the estimation process of the influence of selected zootechnical characteristics of cows on the milk quality, which is determined by the standards defining the requirements compliance concerning the level of somatic cell counts in the obtained milk. The work resulted in creation of the optimum predictive model which is a neural topology of the MLP-6:17:1 (MultiLayer Perceptron). The performed analysis of the generated neural model’s sensitivity to the individual input variables showed the impact of some of the zootechnical characteristics on somatic cell counts in the obtained milk.
PL
Uznane zdolności predykcyjne, jakie reprezentują wybrane topologie SNN (Sztuczne Sieci Neuronowe), wykorzystywane są powszechnie również w szeroko rozumianej praktyce, np. wspomagają procesy decyzyjne zachodzące w przetwórstwie rolno-spożywczym, np. w branży mleczarskiej. Celem pracy było wykorzystanie SNN jako narzędzia predykcyjnego w procesie oceny wpływu wybranych cech zootechnicznych krów na jakość mleka krów, która określana jest przez normy definiujące spełnienie wymogów odnośnie poziomu zawartości komórek somatycznych w pozyskiwanym mleku. W pracy wytworzono optymalny model predykcyjny będący neuronową topologią typu MLP: 6-17-1 (MultiLayer Perceptron). Przeprowadzona analiza wrażliwości wygenerowanego modelu neuronowego na poszczególne zmienne wejściowe wykazała istotny wpływ wybranych cech zootechnicznych na liczbę komórek somatycznych w pozyskanym mleku.
PL
Analiza obrazów oraz pozyskiwanie danych zawartych w obrazach cyfrowych są istotnym elementem w procesie generowania zbiorów uczących, przeznaczonych do budowy modeli neuronowych. Wraz z rozwojem komputerowej analizy obrazu możliwe jest pozyskiwanie coraz większej ilości danych. Dlatego zasadne jest tworzenie nowych oraz modyfikowanie istniejących systemów informatycznych, wspierających neuronową analizę obrazów o nowe funkcje, zwiększające użyteczność tych aplikacji.
EN
Image analysis and gathering data from digital images is an important element in process of generating learning sets for the construction of the neural models. With the development of computer image analysis it is possible to obtain more data. This is a reason to create and develop computer systems that support neural image analysis and increase usability of this software.
PL
Celem pracy była neuronowa identyfikacja stopnia rozkładu materiału organicznego (słomy) na podstawie informacji graficznej, uzyskanej przy użyciu metod analizy obrazu. W tym celu opracowano oryginalny system informatyczny "nStraw", umożliwiający edycję obrazów cyfrowych, akwizycję danych graficznych, ich analizę oraz konwersję do zbiorów uczących w postaci akceptowalnej przez symulator sztucznych sieci neuronowych.
EN
The aim of this study was to describe a neural identification of the level of decomposition of organic material, based on graphic information, which is obtained by using image analysis. For this purpose, a neural network "nStraw" was generated for editing images, data retrieval and analysis.
PL
W pracy zaprezentowano wytworzony, oryginalny system informatyczny "USG Recognizer", który zaopatrzony został w szereg funkcji wspomagających tworzenie adekwatnych zbiorów uczących, niezbędnych w procesie generowania modeli neuronowych. Dzięki tym funkcjonalnościom możliwa jest identyfikacja oraz ekstrakcja wiedzy zawartej w graficznych danych empirycznych, zakodowanej w postaci cyfrowych zdjęć ultrasonograficznych. W oparciu o zbudowaną aplikację wygenerowana została sztuczna sieć neuronowa, której celem było wspomaganie rozpoznania lub wykluczenia ciąży, dokonanego na podstawie ultrasonogramów macicy krowy. Zaproponowany system informatyczny "USG Recognizer" został zbudowany z wykorzystaniem środowisk: Visual Paradigm (UML 8.0) oraz Microsoft Visual Studio 2010 Professional Edition.
EN
The software "USG Recognizer" that was described in this work is equipped with a binarization function with threshold. The application also fulfills some additional functions such as: contrast and closing. With this functionality it is possible to achieve empirical data from digital ultrasound photo of cow's womb. The artificial neural network was generated on the basis of created application. The main purpose of this network is to support an identification or exclusion of the gestation in user's ultrasound picture. "USG Recognizer" was created using Visual Paradigm (UML 8.0) and Microsoft Visual Studio 2010 Professional Edition environments.
PL
Efektywnym podejściem do estymacji procesów zachodzących w złożonych systemach empirycznych inżynierii rolniczej jest wykorzystanie nowoczesnych metod, jakie reprezentują neuronowe techniki predykcyjne. Sztuczne sieci neuronowe stanowią intensywnie rozwijającą się dziedzinę wiedzy, coraz częściej stosowaną w wielu obszarach zarówno nauki, jak również praktyki. Podstawą działania sztucznych sieci neuronowych są algorytmy uczące, umożliwiające zaprojektowanie odpowiedniej topologii sieci oraz dobór parametrów tej struktury. W pracy zaproponowano wykorzystanie technik neuronowego modelowania do estymacji poziomu zawartości metanu w biogazie, emitowanego w trakcie procesu fermentacji metanowej kiszonki. Uzyskane wyniki badań potwierdzają hipotezę, że predykcyjny model neuronowy, opisujący produkcję metanu w trakcie procesu fermentacji kiszonki w biofermentorze, jest właściwym instrumentem dla dokonania oceny prognozowania poziomu tej emisji.
EN
The usage of modern methods, which represent predictive neural techniques is an effective approach to the estimation of the processes occurring in the complex empirical systems of agricultural engineering. The artificial neural networks are a rapidly expanding field of knowledge used increasingly in many areas of science, as well as practice. The learning algorithms, enabling the design of appropriate network topology and selection of the parameters of this structure, matched to the problem to be solved are the basis of functioning of artificial neural networks. The paper proposes the use of neural modeling techniques to estimate the level of methane content in the biogas emitted over the methane fermentation process of silage. Obtained research results confirm the hypothesis that predictive neural model describing the methane production during the silage fermentation process in biofermentor is an appropriate tool to assess the forecasting of the level of this emission.
16
EN
An important, and not yet solved problem in meat industry is the issue of estimating the intramuscular fat level content in the carcass. Solution of the problem of identification of quantity of the intramuscular fat, on the basis of Information in ultrasound images taken on lamb's carcasses or even living animal, is ofessential utilitarian importance. The amount of intramuscular fat (known as marbling) has significant impact on market value and meat's culinary usefulness. Previoitsly used methods for marbling classification in carcasses based on an analysis of animal 's age, weight and gender, or had invasive nature. These methods were estimated as unreliable and inefficient. There have been noticed growing explorers' interest in drawing conclusions based on information of data coded in a graphic form. The neuronal identification of pictorial data, with special emphasis on both quantitative and qualitative analysis, is more frequently utilized to gain and deepen the empirical data knowledge. Extraction and then classification of selected picture features, such as color or surface structure, enables one to create computer tools in order to identify these objects presented as, for example, digital pictures. Thispaper presents an attempt to create noninvasive method to classify marbling, based on ultrasound images, computer image analysis and artificial neural networks.
PL
Ważnym, i dotychczas nierozwiązanym problemem w branży mięsnej jest ocena poziomu zawartości tłuszczu śródmięśniowego w tuszy zwierzęcej. Rozwiązanie problemu identyfikacji ilości tłuszczu śródmięśniowego na podstawie informacji pozyskanej z obrazów USG tusz zwierzęcych, a także żywych zwierząt, ma istotne znaczenie utylitarne. Ilość tłuszczu śródmięśniowego (tzw. marmurkowatość) ma znaczny wpływ na wartość rynkową i przydatność kulinarną mięsa. Stosowane dotychczas metody oceny otłuszczenia zwierząt bazują na analizie ich wieku, masy ciała oraz płci lub maja charakter inwazyjny. Metody te są zawodne oraz mało efektywne. Widoczny jest wzrost zainteresowania wyciąganiem wniosków bazując na danych zakodowanych w formie graficznej. Neuronowa analiza obrazu, ze szczególnym uwzględnieniem analiz ilościowych i jakościowych, jest coraz częściej wykorzystywana analizy danych empirycznych. Wydobycie a następnie klasyfikacja wybranych cech obrazu, takich jak kolor, kształt czy tekstura, możliwa jest dzięki wykorzystaniu systemów informatycznych analizujących i przetwarzających obrazy cyfrowe. W artykule przedstawiono próbą wytworzenia nieinwazyjnej metody klasyfikacji marmurkowatości, z wykorzystaniem zdjęć USG, komputerowej analizy obrazu oraz sztucznych sieci neuronowych.
PL
Ważnym etapem oceny jakościowej magazynowanych zbóż jest określenie ewentualnych ubytków struktury fizycznej ziarniaków, wynikających z ich stanu chorobowego. Motywem niniejszej pracy było dokonanie klasyfikacji zdjęć rentgenowskich ziaren pszenicy w celu identyfikacji negatywnych efektów żerowania potencjalnych szkodników. Efektem utylitarnym prowadzonych badań było wytworzenie oraz weryfikacja i walidacja komputerowego systemu informatycznego "RENZIAR 1.0", wspomagającego proces wstępnej analizy zdjęć rentgenowskich, dokonywanej w celu ekstrakcji cech charakteryzujących znamiona chorobowe ziarniaków. Pozyskanie tych informacji jest niezbędne w procesie tworzenia modeli neuronowych służących do identyfikacji oraz klasyfikacji wybranych ziaren zbóż, w kontekście ich uszkodzeń spowodowanych chorobą. System ten został wytworzony w środowisku programistycznym Microsoft Visual Studio 2008, wykorzystującym Framework .NET 3,5. System informatyczny "RENZIAR 1.0 "posiada przyjazny użytkownikowi interfejs, który w istotny sposób ułatwia pracę potencjalnemu użytkownikowi.
EN
Neural analysis pictures are used in many fields of science and utilitarian areas by increasing number of followers. Artificial neural networks work best in cases where one cannot use structural knowledge, be they math formulas. There is an increasing load of data that requires processing. Therefore a need for development of intelligent computers to compile such data has appeared. The very aim of this paper is to classify X-rays of wheat grains in order to create new computer applications. The aforementioned computer applications are applied in theprocess of analysis and classification ofX-rays ofwheat grains. This system has been developed and devised in Microsoft Visual Studio 2008 with NET 3.5 Framework. The inter-face has been set in the RENZIAR 1.0 Program, which is very specific, but not complicated, and therefore should not cause anyproblems to its users.
PL
Celem pracy było określenie cech reprezentatywnych, opisujących wewnętrzne uszkodzenia ziarniaków wywołane przez wołka zbożowego. Na tej podstawie zbudowano 2 warianty zbiorów uczących (opartych na 2 różnych zbiorach zmiennych reprezentatywnych), które posłużyły do generowania 2 zestawów klasyfikatorów neuronowych. Następnie dokonano porównania jakościowego wytworzonych modeli oraz zaproponowano sieć optymalną (z punktu widzenia przyjętych założeń). Podkreślono aspekt utylitarny przeprowadzonych badań, wskazując na możliwość wsparcia (automatyzacji) procesów decyzyjnych zachodzących w trakcie magazynowania zbóż.
EN
Determining characteristics of representative features, describing internal injuries triggered by a grain weevil was a purpose of the work. On this base teaching sets essential to produce classification neural models were built (for 2 variants). Next, the qualitative comparison of created models was executed and an optimal network proposed (taking into account admitted assumption). The investigations were being dedicated for assisting decision-making processes which occur during cereal crops storing.
PL
Celem projektu badawczego było opracowanie modelu neuronowego do identyfikacji mechanicznych uszkodzeń ziarna kukurydzy na podstawie ich cyfrowych fotografii. Wybrany został zestaw cech charakterystycznych na podstawie, których możliwa jest klasyfikacja ziarniaków na zdrowe i uszkodzone. W wyniku badań otrzymano sztuczną sieć neuronową typu perceptron wielowarstwowy charakteryzującą się zdolnościami identyfikacyjnymi zbliżonymi do umiejętności człowieka.
EN
The subject of the project was to develop a neural model for the identification of selected mechanical damage to maize caryopses on the basis of digital photographs. The author has selected a set of features that distinguish damaged t healthy caryopses. As a result of this study it has been obtained an artificial neural network of a multilayer perceptron type whose identification capacity is near of the human 's one.
EN
During the adaptation process of the weights vector that occurs in the iterative presentation of the teaching vector, the MLP type artificial neural network (Multi Layer Perception) attempts to learn the structure of the data. Such a network can learn to recognize aggregates of input data occurring in the input data set regardless of the assumed criteria of similarity and the quantity of the data explored. The MLP type neural network can be also used to detect regularities occurring in the obtained graphic empirical data. The neuronal image analysis is then a new field of digital processing of signals. It is possible to use it to identity chosen objects given in the form of bit map. If at the network input, a new unknown case appears which the network is unable to recognize, it means that it is different from all the classes known previously. The MLP type artificial neural network taught in this way can serve as a detector signaling the appearance of a widely understood novelty. Such a network can also look for similarities between the known data and the noisy data. In this way, it is able to identity fragments of images presented in photographs of e.g. maize grain. The purpose of the research was to use the MLP neural networks in the process of identification of chosen varieties of maize applying the image analysis method. The neuronal classification shapes of grains was performed with the use of the Johan Gielis super formula.
PL
Podczas iteracyjnej korekcji wektora wag, zachodzącej w trakcie procesu uczenia sieci neuronowej typu MLP (perceptron wielowarstwowy), następuje adaptacja (przez tworzony model neuronowy) wiedzy zawartej w strukturze analizowanych danych. W badaniach prowadzonych w dyscyplinie inżynieria rolnicza, istotne znaczenie ma proces pozyskiwania informacji zakodowanej w postaci graficznej, np. w formie zdjąć cyfrowych. Często zmiennymi reprezentatywnymi, które w sposób wystarczający charakteryzują zobrazowany obiekt, są wybrane współczynniki kształtu. Celem badań było wykorzystanie sieci neuronowych typu MLP w procesie identyfikacji wybranych odmian kukurydzy z wykorzystaniem metod analizy obrazu. Wykorzystana metoda klasyfikacji polegała na rozpoznawaniu różnic kształtów analizowanych obiektów. Neuronowa identyfikacja została wykonana z użyciem super formuły Johana Gielisa.
first rewind previous Strona / 6 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.