Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 168

Liczba wyników na stronie
first rewind previous Strona / 9 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tectonics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 9 next fast forward last
EN
Majority of ca. 90 sites ofsandstone crag groups and individual crags, occurring in the Świętokrzyskie (Holy Cross) Mts. region, represent the following crag-forming lithostratigraphic units: Cambrian Wiśniówka Formation, Devonian Barcza Fm and Zagórze Fm, Triassic Zagnańsk Fm and Krynki Beds, as well as Jurassic Skloby Fm and Ostrowiec Fm. Specific features of these rocks are the occurrence of sandstone series, up to 20 m thick, above more plastic, clayey or heterolithic series, high-energy depositional environments, and siliceous composition. The crag-forming sandstones differ in the amount of siliceous cement: from strongly cemented Paleozoic quartzitic sandstones to porous Mesozoic sandstones with poor cement, which determines diverse mechanical properties. Strongly cemented Paleozoic rocks display high rock strength and abrasion resistance, while porous and theoretically friable Mesozoic sandstones are characterised by high grain packing due to compaction. Regarding the principal role of gravitational disinte¬gration of rock massifs under the periglacial conditions in the Pleistocene, other factors constraining the crag formation and shaping are the tectonic situation of rocks (orientation of strata and joints), adequate joint spacing, and bed thickness. The interrelations between lithological and structural features of crag-forming sandstones and tectonics, conditioning erosion and weathering rates are specific for particular types of these sandstones.
PL
Zmiany tektonicznego pola naprężeń w jednostce Depresji Świebodzic są powodem skomplikowanej kinematyki bloków skalnych. Pole sił tektonicznych wytwarza efekty rotacji, ruchów poziomych i pionowych skalnych bloków rozdzielonych licznymi uskokami. System pomiarowy Laboratorium Geodynamicznego w Książu, składający się z instrumentów stojących na skalnych blokach, jest naturalnym detektorem aktywności tektonicznej. System ten pozwala na wyznaczanie chwilowych wartości funkcji aktywności tektonicznej z mikrometryczną dokładnością. Porównanie zmian funkcji aktywności tektonicznej i ich pochodnych z czasowym rozkładem zdarzeń sejsmicznych w obszarach Dolnego i Górnego Śląska wskazuje, że trzęsienia ziemi występują zgodnie ze szczególnymi i powtarzającymi się stanami procesu deformacji tektonicznych górotworu Depresji Świebodzic. Ta obserwacja wzmacnia tezę o istnieniu wielkoskalowego, jednorodnego pola naprężeń tektonicznych, którego zasięg w tym samym czasie obejmuje obszary Depresji Świebodzic oraz regiony górnicze Czech, Górnego i Dolnego Śląska. Wiarygodność tej tezy jest niezależnie potwierdzona przez wieloletnie pomiary horyzontalnych składowych ruchów skorupy ziemskiej, wykonanych technikami satelitarnymi przez sieć stacji GNSS, SLR, DORIS i VLBA, rozmieszczonych na płycie europejskiej. W obszarze Europy Centralnej pomiary te pokazują jednorodne pole horyzontalnych prędkości przesuwu Płyty Europejskiej. Jednorodny ruch płyty jest wynikiem działania jednorodnego, wielkoskalowego pola sił tektonicznych, które ten ruch wywołują. Bieżący stan wielkoskalowego jednorodnego pola naprężeń tektonicznych ma duży wpływ na wywołanie wstrząsu sejsmicznego. Przedstawione wyniki badań zjawisk tektonicznych są dedykowane potrzebie wzmocnienia wiedzy o aktualnej możliwości zajścia zdarzenia sejsmicznego. Problem ten ma kluczowe znaczenie dla poprawy warunków bezpieczeństwa robót górniczych w obszarach wydobywczych Górnego i Dolnego Śląska.
EN
Changes of the tectonic stress field in Świebodzice Depression unit are the reason of complex variations of the rock blocks kinematic. Field of tectonic stresses produced effects of rotations and horizontal/vertical displacements of rocky blocks separated by numerous faults. The measurement system of the Geodynamic Laboratory in Ksiaz, equipped with instruments situated on the rocky blocks, is a natural detector of tectonic activity, allowing determination of the temporal functions of tectonic activity with sub-micrometric accuracy. Comparison of the functions of the tectonic activity variations and their derivatives with temporal distribution of the seismic shocks in the Lower and Upper Silesia indicate that earthquakes occurred in accordance with particular and repeatable conditions of the Świebodzice Depression tectonic deformations. This observation strengthens the thesis about large-scale, homogeneous field of tectonic stresses which, at the same time, affect the Świebodzice Depression as well as mining areas of the Czech and Lower and Upper Silesian. The credibility of this thesis is independently confirmed by the results of many years long measurements of the Earth crust motions, performed on hundreds of stations by the space and satellite techniques i.e. GNSS, SLR, DORIS, VLBA. Current state of the large-scale, homogeneous field of tectonic stresses decided about the triggering of the earthquakes. Presented investigations of tectonic phenomena are dedicated to improve the safety conditions of mining works, executed in Upper and Lower Silesian mining areas.
EN
We expected that our paper on the crevasse-splay microdelta (Chomiak et al., 2019) would arouse the interest of other researchers for at least two reasons. First, this is the first such palaeoform discovered and described within the Mid-Miocene lignite seam in Poland. Second, the microdelta siliciclastic deposits are strongly deformed both ductile and brittle. Therefore, we would like to thank Tom van Loon for his effort to comment on our article, including his words of appreciation, and above all, for pointing out some of the terminological and interpretative shortcomings. Our reply will be in line with the issues discussed in his comment.
EN
The Jurassic through Palaeogene stratigraphy and tectonic structure of the PD-9 borehole at Szczawnica, Pieniny Klippen Belt, West Carpathians, Poland, is revised. The borehole was drilled in the strongly tectonized northern boundary fault zone of the Pieniny Klippen Belt, of Miocene age. Age revision is given by dinoflagellate cysts. Late Cretaceous taxa are reported from the Hałuszowa Formation. The Bryjarka Member (previously with the rank of formation) yielded rich Early Eocene (Ypresian) assemblages. Similar ones are reported from the Szczawnica Formation. A tectonic thrust sheet of the Jurassic Szlachtowa Formation (Grajcarek Unit) in the Palaeogene of the Magura Nappe is evidenced; it yielded late Toarcian-Aalenian dinoflagellate cyst assemblages. The succession of strata recorded from the PD-9 borehole shows the steep, almost vertical attitude of the Grajcarek Main Dislocation at Szczawnica, separating the structures of the Magura Nappe (to the north) and the Pieniny Klippen Belt to the south.
5
Content available Seismo-geological model of the Baltic Basin (Poland)
EN
The aim of this study is to construct a seismo-geological model of the western part of the Baltic Syneclise. This model enables reconstruction of the tectonic processes taking place in this area, which had a significant impact on the formation of prospective zones for the occurrence of unconventional hydrocarbon accumulations. The two seismic surveys Opalino 3D and Kościerzyna-Gdańsk 2D, together with borehole data available in the vicinity, were used for the research. Well data were used not only for the seismic-to-well tie, but also for the construction of well cross-sections (including balanced ones). The structural interpretation of seismic boundaries enabled the separation of four structural stages: Precambrian; Caledonian, Permian-Mesozoic and Cenozoic. The seismic interpretation of the Opalino 3D survey indicates the presence of block-style tectonics in this area. This system is considered to be a part of a large block system, also extending throughout the area of the 2D survey. The Caledonian interval shows the greatest degree of structural complexity. Most of the large Palaeozoic dislocations already had been formed in the Cambrian. They underwent reactivation and/or inversion in the Silurian, or in the final stages of the Caledonian and/or Variscan Orogeny, at the latest. The current shape and structure of the Baltic Syneclise and the development of the Palaeozoic sedimentary cover were significantly influenced by the processes taking place in the Teisseyre-Tornquist Zone (TTZ). The dislocations of the Lower Palaeozoic stage are characterized by general NW-SE and NE-SW trends, although the first of these seems to be dominant.
6
Content available The Pieniny Klippen Belt in Poland
EN
The Pieniny Klippen Belt in Poland marks the Central Carpathian-North European plate suture zone. The strictly tectonic present-day confines of the Pieniny Klippen Belt are characterized as (sub)vertical faults and shear zones. A strong reduction in the space of the original sedimentary basins took place. The strike-slip-bounded tectonic blocks, thrust units, toe-thrusts and olistostromes are mixed together, resulting in the present-day mélange character where individual tectonic units are difficult to distinguish. The sedimentary rocks of the Pieniny Klippen Belt were deposited in the paleogeographic realm known as the Alpine Tethys that was divided into two basins separated by the Czorsztyn Ridge. The accretionary prism formed in front of the advancing Alcapa (Central Carpathians) terrane had overridden the Czorsztyn Ridge during the Late Cretaceous-Paleocene. The destruction of the Czorsztyn Ridge supplied huge amounts of coarse-clastic material, including olistoliths, into the Magura Basin during the Late Cretaceous-Paleocene. The rotation of the Alcapa caused the strike-slip motions which led to the deformation of the previously created nappes and development of the flower structure. Two parallel faults delineate the southern and northern limits of the Pieniny Klippen Belt. The stops in Sromowce (Macelowa and Sobczański Gorge area) allow the observation of the southern marginal zone of the Pieniny Klippen Belt, the overturned position of the rotated counterclockwise deformed rock as well as the diapiric uplift of the Pieniny rocks in a transpressional strike-slip regime. The Zawiasy (Krościenko area) stop is located in the northern marginal zone (Hulina Unit) of the Pieniny Klippen Belt along the major dextral strike-slip Dunajec Fault.
7
Content available The North European Platform suture zone in Poland
EN
The authors interpret the structure of the Central Carpathian-North European plates suture zone in Poland, where three main Carpathian tectonic units: the Central Carpathian, Pieniny Klippen Belt (PKB) and Outer Carpathian are present. In general, the PKB follows this zone. Several deep bore-holes were drilled in this region and the seismic lines were tied to bore-hole data and geological maps. The Polish PKB belongs to the complex geological structure stretching from Vienna in Austria to Romania. The rocks included in the PKB tectonic components were deposited within the paleogeographic realm known as the Alpine Tethys, mainly during the Jurassic-Early Cretaceous times. Both strike-slip and thrust components occur within the Polish section of the PKB. The strongly tectonized, few kilometer wide PKB zone is limited by a flower structure marked by two major faults, linked to the strike-slip zone. These faults reach the North European Platform (part of the North European Plate). The flysch sequences, arranged into a series of north-vergent thrust-sheets, constitute the main component of the PKB in the survey zone. They contain olistoliths, which are mainly Jurassic-Early Cretaceous in age. The PKB tectonic components of different age, strike-slip, thrust as well as toe-thrusts and olistostromes are mixed together, giving the present-day mélange character of this belt, where individual units are hard to distinguish. Two olistostrome belts (mélange units) exist within the PKB structure. The seismic lines show the Central Carpathian Paleogene rocks covering the Paleozoic Central Carpathian Basement south of the PKB. The Subtatric covers the High-Tatric autochthonic and allochthone rocks. The Central Carpathian Plate is thrust over the North European Platform in the Podhale region. The allochthonous Outer Carpathians consist of several nappes (thrust-sheets) verging northward. They are thrust over each other and over the North European Platform which dips gently southward.
EN
The Menilite Beds (Oligocene of Polish Flysch Carpathians) at Skrzydlna crops out in a structurally complex zone of the Fore-Magura Unit, which is tectonically overridden by Magura Nappe thrust form the S. The exposed sedimentary suite, representing the Dukla Basin, consists of fine-grained, well organised strata deposited in a low-energy, deep marine basin, which are abruptly overlain by poorly organised, coarse sandy conglomerate that forms a Mass Transport Deposit (MTD) complex. The MTD contains large boulders of extrabasinal rocks, massive sandstone beds with intrabasinal mudstone clasts, and slump sheets of sandstones. Above rests a fining- upwards sequence of sandstone beds interlayered with mudstones. The fine-grained facies reappear above to terminate the exposed succession. Erosional contacts and rapid facies changes, both vertical and lateral, are characteristic for the MTD unit. The sandstone-mudstone unit above contains laterally migrating erosional channels filled with massive sandy conglomerate in the lower part. Turbidites of varying density and completeness of internal structures that occur above are accompanied by an association of mixed facies including large-scale dune cross-bedding. Mineralogically, the sandstones are quartz arenites, sub-lithic arenites and wackes. Calcarenite grains – bioclasts, micrite and marl occur in substantial proportions only in the uppermost part of the succession. The point-counting data plotted on Qm-F-Lt diagram are clustered within the recycled fields: quartzose and transitional. Mineralogical maturity of the sandstones has the tendency to decrease from the sub-MTD strata upwards via the MTD unit to the lower part of the sandstone-mudstone complex; then it increases to the youngest sandstone beds with carbonate grains. These tendencies, associated with sedimentary features of the succession, reflect rapid uplift, emergence and progressive erosion of the terrigenous detritus source area, followed by tectonic stabilisation reflected by the appearance of the “carbonate factory”.
9
Content available On the nature of the Teisseyre-Tornquist Zone
EN
The Teisseyre-Tornquist Zone (TTZ) is the longest European tectonic and geophysical lineament extending from the Baltic Sea in the NW to the Black Sea in the SE. This tectonic feature defines a transition zone between the thick crust of the East European Craton (EEC) and the thinner crust of the Palaeozoic Platform to the SW. The TTZ is evident from the seismic data as a perturbation of the Moho depth as well as from magnetic and gravity anomaly maps and heat flow distribution. For over a century, the TTZ has been considered a fossil plate boundary of the EEC corresponding to the limit of early Palaeozoic palaeocontinent Baltica. The results of quantitative interpretation of gravity and magnetic data, integrated with data from the new reflection seismic profiles crossing the TTZ, indicate the continuation of the Precambrian basement of the EEC and its lower Palaeozoic cover toward the SW underneath the Palaeozoic Platform. Potential field modelling also suggests the occurrence of a crustal keel underneath the TTZ. These results imply the location of a Caledonian tectonic suture, marking the site of the collision between Avalonia and Baltica, not along the TTZ, but farther SW, in NE Germany and SW Poland.
EN
A geological structural study has been conducted along the tectonic contact zone of the Central Carpathian Paleogene Basin (CCPB) and Pieniny Klippen Belt (PKB) in the eastern Podhale and western Spišska Magura areas. It concerned mostly the Central Carpathian Paleogene flysch strata and, to a lesser degree, the Upper Cretaceous rocks of the PKB. Tectonic deformation structures genetically related to the important tectonic boundary in question occur within a c. 1.5–2 km-wide strip of the Paleogene flysch rocks adjacent from the south to the PKB. Two parallel structural domains have been distinguished within this strip: the contact zone proper in the north and the peri-Pieniny monocline in the south. Most of the minor faults documented in the Paleogene flysch bear a record of dextral motion parallel to the contact zone. Some dextral-reverse oblique slip faults of NE-SW and W-E trends have also been recognized. Discrepancies in the orientation and sense of movement on strike-slip faults in the Paleogene flysch rocks and those in marlstones of the “klippen envelope” of the PKB were encountered. They probably reflect differences in the structural history of both the adjacent rock complexes, as the Upper Cretaceous deposits of the PKB must have experienced more deformation events and, in general, were affected by much more intense strain than those of the CCPB. Contractional structures, such as south-vergent reverse faults and recumbent folds which point to ca N-S tectonic shortening, have also been found in the Paleogene rocks. The entirety of the structural features found in the CCPB is characteristic of a transpressional regime. The regionally consistent coexistence of structures resulting from strike-slip movements and tectonic shortening, as well as features pointing directly to a transpressional regime, prove the transpressional dextral nature of the contact between the CCPB and PKB.
EN
This study addresses the complex geology caused mainly by tectonic and glaciotectonic processes in lignite-bearing areas of Poland. Tectonics played a dominant role in the deformation of peat/lignite seams during their deposition. This is especially true for deep grabens where the thickest lignite seams were deposited (e.g., Bełchatów). Conversely, glaciotectonics led to the post-depositional deformation of other deposits (e.g., Sieniawa). The effects of tectonic and glaciotectonic processes in this region are investigated using both simplified geological cross-sections and photography. The size, depth and architecture of the glaciotectonic structures verified in this study demonstrate the importance of their consideration during the exploration and exploitation stages of such lignite deposits, as well as the planning of construction projects in areas strongly transformed by glaciotectonics.
PL
Prezentowana praca poświęcona jest złożonej geologii, spowodowanej głównie przez procesy tektoniczne i glacitektoniczne, wybranych obszarów węglonośnych w Polsce. Tektonika odgrywała fundamentalną rolę deformującą pokłady torfu/węgla brunatnego w czasie ich depozycji. Dotyczy to zwłaszcza głębokich rowów tektonicznych, w których zalegają najgrubsze pokłady węglowe, np. złoża: Bełchatów, Szczerców, Turów, Lubstów, Pątnów I-IV, Adamów, itd. Natomiast glacitektonika prowadziła do postsedymentacyjnych deformacji polskich pokładów węgla brunatnego. W większości przypadków rola destukcyjna procesów glacitektonicznych była niewielka, w niektórych przypadkach znacząca, a nawet dominująca, np. na obszarze złoża Sieniawa. Skutki procesów tektonicznych i glacitektonicznych przedstawiono na uproszczonych przekrojach geologicznych (złoża: Bełchatów, Szczerców, Oczkowice, Sieniawa), a także na fotografiach wykonanych w niektórych odkrywkach eksploatowanych aktualnie złóż (odkrywki: Jóźwin IIB, Drzewce, Adamów, Turów, Sieniawa). O ile tektonika dotknęła głównie spągowe warstwy pokładów węglowych, o tyle glacitektonika doprowadziła do deformacji ich partii stropowych. Zróżnicowane rozmiary, głębokość zalegania i bogactwo struktur glacitektonicznych sprawia, że należy brać je pod uwagę na etapie dokumentowania złóż, ich eksploatacji, czy też planowania inwestycji budowlanych na obszarach silnie przekształconych glacitektonicznie.
EN
Integrated tectonic interpretation of seismic data and core samples from boreholes in the vicinity of the Kock Fault Zone (KFZ) allowed us to identify several tectonic deformation events that were responsible for creating its complex structure. The KFZ is an example of a mechanically weak regional-scale tectonic structure that accumulated deformation over hundreds of millions of years and therefore is a good indicator of stress regime changes in a broader area. The KFZ is here regarded as a combination and superposition of two genetically and temporally different faults: the older Kock Fault, which is an inverted normal fault, and the younger, low-angle Kock Thrust. The first, Silurian stage of KFZ evolution occurred in a tensional stress regime that gave rise to the activation of a deeply rooted normal-slip precursor to the Kock Fault. Subsequently, this fault underwent inversion during the Late Famennian compressive/transpressive event. In the Early Carboniferous, the tectonic stress regime changed into tension/transtension, leading to extrusion of basalt magma and abundant mineralisation in the vicinity of the inverted Kock Fault, followed by tectonically relaxed sedimentation of Carboniferous strata. The deposition was terminated by a compressional event at the end of the Westphalian. Contraction resulted in the formation of the low-angle Kock Thrust decoupled in Silurian shale that cut across the upper part of the Kock Fault and displaced it towards the NE, over the East European Craton foreland.
EN
The Magura Nappe in the Polish sector of the Outer Carpathians consists of four tectonic subunits characterized by differing development of facies. From the south to the north, they include the Siary, Rača, Bystrica and Krynica subunits. The sedimentary succession in the Rača Subunit in the vicinity of the village of Osielec is composed of Campanian–Palaeogene flysch deposited in the Magura Basin. In this succession, the Middle Eocene Pasierbiec Sandstone Fm consists of thick-bedded sandstones and conglomerates with occasional intercalations of thin-bedded shale-sandstone flysch. Within the Pasierbiec Sandstone Fm at Osielec there is an olistostrome, rich in pebbles and cobbles of exotic rocks. In addition, large blocks of Neoproterozoic metabasites and boulders of Palaeogene organogenic limestones were found. The discovery of metabasites raised the possibility that the rocks in question could be evidence of supposed oceanic crust in the basement of the Magura sedimentary basin, because of the suggestion that they represent the Alpine orogenic cycle. This concept was abandoned when investigations of the absolute age of the metabasites gave a date of ca. 600 Ma. In the Osielec area, there are two tectonic thrust sheets in the Rača Subunit, namely the Osielczyk Thrust Sheet in the north and the Bystra Thrust Sheet in the south; they are folded and cut by a transverse system of strike-slip and oblique faults. The Osielczyk Thrust Sheet was overthrust northwards on to the Siary Subunit.
EN
Satellite gravimetry is a powerful and reliable tool for regional tectono-geodynamic zonation. The studied region contains intricate geodynamical features (high seismological indicators, active rift systems and collision processes), richest structural arrangement (existence of mosaic blocks of oceanic and continental Earth’s crust of various age), and a number of high-amplitude gravity anomalies and complex magnetic pattern. The most hydrocarbon reserves of the world and other important economic deposits occur in this region. Comprehensive analysis of satellite gravity data with application of different approaches was used to develop a sequence of maps specifying crucial properties of the region deep structure. Careful examination of numerous geological sources and their combined examination with satellite gravity (main), magnetic, GPS, seismic, seismological and some other geophysical data enabled to develop a new tectonic map of the Arabian–African region. Integrated analysis of series of gravity map transformations and certain geological indicators allowed to reveal significant geodynamic features of the region.
EN
The Upper Cretaceous of the Elbe Valley in Saxony and the erosion outliers west of it mark an Upper Cretaceous NW-SE-running strait between the Westsudetic Island in the NE and the Mid-European Island to the west. This street connected the NW-German-Polish Basin in the north and the Bohemian Cretaceous Basin (and adjacent regions of the Tethys) in the south. However, post-Cretaceous erosion north of Meißen removed any Upper Cretaceous deposits but erosion outliers at Siebenlehn and especially north of the Forest of Tharandt proof the presence of a marly through silty belt in this area. Three transgressions (base of uppermost Lower to Middle Cenomanian, base of Upper Cenomanian and base of the geslinianum Zone in the mid-Upper Cenomanian) have taken place. The sedimentation was influenced by the topography of the mentioned islands and by movements at structural lines in the Proterozoic and Palaeozoic basement. During the early Late Cenomanian, a marly-silty sedimentation (Mobschatz Formation) in the north existed besides sandy sedimentation in the south (Oberhäslich Formation). The transgression at the base of the geslinianum Zone caused the final submergence of island chains between Meißen, Dresden and Pirna, and a litho- and biofacies bound to cliffs and submarine swells formed. A silty-marly lithofacies, a mixed sandy-silty lithofacies (Dölzschen Formation) and a sandy lithofacies in the south (Sächsisches Elbsandsteingebirge) co-existed during the latest Cenomanian. The first mentioned biofacies yields a rich fauna mainly consisting of oysters, pectinids, rudists, and near-shore gastropods accompanied by echinids and, in some cliffs, teeth of sharks. The Pennrich fauna (Häntzschel 1933; Uhlig 1941) especially consists of the very common serpulids Pyrgopolon (P.) septemsulcata and Glomerula lombricus (formerly Hepteris septemsulcata and G. gordialis).
16
PL
Wykorzystując zaktualizowaną mapę geologiczną, 18 przekrojów geologicznych, profile stratygraficzne 7 otworów wiertniczych, wyniki pomiarów terenowych oraz numeryczny model terenu opracowano przestrzenny model geologiczno-strukturalny w rejonie Soli (Karpaty Zachodnie) obejmujący swym zasięgiem powierzchnię ok. 227 km2. Skomplikowana budowa geologiczna Karpat Zewnętrznych w analizowanym rejonie objawia się występowaniem 3 jednostek tektonicznych, w obrębie których można wyróżnić 27 wydzieleń litostratygraficznych. Osnowę strukturalną modelu stworzono na podstawie 66 dyslokacji. Podział litostratygraficzny został uproszczony tak, aby możliwe było połączenie modelu strefy przypowierzchniowej z modelem głębszej strefy skonstruowanym na podstawie interpretacji sejsmiki.
EN
Using an updated geological map, 18 geological cross-sections, stratigraphic profiles of 7 boreholes, the results of field measurements and a digital terrain model spatial geological and structural model in the area of Salt (Western Carpathians) was created. Modeling area covers an area of approximately 227 km2. The complicated geological structure of the Outer Carpathians in the analyzed region revealed the presence of three tectonic units, within which one can ditinguish 27 lithostratigraphic units. The structural model was created based on 66 dislocations. Lithostratigraphic division has been simplified so that it can be combined with model constructed based on seismic data interpretation.
17
Content available remote Główne linie tektoniczne a anomalie radonowe w Karpatach
PL
Pochodzenie radonu 222Rn w glebach związane jest z kilkoma różnymi źródłami. Z jednej strony pierwiastek ten związany jest przede wszystkim z naturalną promieniotwórczością skał. Z drugiej strony w strefach głębokich rozłamów dochodzi do migracji większych ilości radonu z głębszych stref skorupy ziemskiej. Dzięki temu zjawisku możliwe jest śledzenie przebiegu dużych stref uskokowych poprzez monitorowanie na powierzchni zawartości radonu w glebach. W referacie przedstawione zostaną przykłady obrazu anomalii radonowych dla wybranych głównych stref tektonicznych w Karpatach.
EN
The origin of 222Rn in soils is associated with a number of different sources. On the one hand, this element is associated primarily with the natural radioactivity of rocks. On the other hand, in areas of deep fault zones larger amounts of radon migrate to the surface from the deeper zones of the earth’s crust. Due to this phenomenon it is possible to track the progress of large fault zone by monitoring a content of radon in the soil. The paper presents examples of radon anomalies associated with selected major tectonic zones in the Carpathians.
EN
According to common interpretations, two narrow crustal blocks are supposed to occur on the south-western edge or in the foreland of the East European Craton. The first one, bounded on the NE by the Nowe Miasto-Radom-Rava Ruska fault system, and on the SW by the Holy Cross Fault, stretches NW-SE from the Łysogóry-Radom region in Poland to the Rava Ruska Zone in Ukraine. The second one, bounded on the NE by the Holy Cross Fault, and from the SW by the Chmielnik-Ryszkowa Wola–Krakovets fault zone, is thought to tie together the Kielce area of the Holy Cross region with the Kokhanivka Zone in Ukraine. Both these blocks may have formed in connection with the development of regional listric faults during Precambrian asymmetric stretching of the Baltica continent, and were part of the marginal zone of the East European Craton. The sedimentary development of the blocks can be comparable to the Blake Plateau off the Florida coast. Both the Paleozoic sections and tectonic deformation styles in the Polish and Ukrainian segments of these blocks are different. Paleozoic tectonic structures of the Holy Cross region have a southern vergence, while the Paleozoic rocks of the Rava Ruska and Kokhanivka regions in western Ukraine are thrust towards the NE. This demonstrates the different tectonic evolution of the Paleozoic succession between the Holy Cross region and western Ukraine, and makes questionable the genetic relationships between these two regions. In this situation, the tectonic blocks of the foreland should be considered heterogeneous. Structural-facies evidence suggests that the SW boundary of the East European Craton should be moved at least to the Chmielnik–Ryszkowa Wola-Krakovets fault.
PL
Artykuł jest próbą zwrócenia uwagi na rolę tektoniki w skutkach na powierzchni terenu spowodowanych wysokoenergetyczną sejsmicznością indukowaną na terenie Górnośląskiego Zagłębia Węglowego (GZW). Liczne badania wykazały, że rozkład sejsmiczności indukowanej w GZW jest dwumodalny, co jest już powszechnie wykazane w sejsmologii górniczej [16, 10, 11, 12, 13, 27, 6, 4, 2, 3, 5 14]. Moda wysokoenergetyczna jest reprezentowana przez wstrząsy wysokoenergetyczne, powstające w wyniku współdziałania naprężeń eksploatacyjnych z naprężeniami tektonicznymi. Uskoki w GZW, zwłaszcza te, które wykazująnaprężenia tektoniczne, mogą być potencjalnymi miejscami wystąpienia wysokoenergetycznego wstrząsu. Zatem można określić rejony będące potencjalnymi rejonami epicentralnymi wysokoenergetycznych wstrząsów. Tektonika powoduje także zaburzenia rozchodzenia się fali sejsmicznej ze źródła wstrząsu. W artykule przeanalizowano oddziaływanie uskoku rydułtowskiego na przykładzie wstrząsu w KWK „Rydułtowy" z dnia 22.02.2013 roku.
EN
This paper is an attempt to attract one´s attention to the role of tectonics in the influence on the surface caused by high-energy induced seismic activity in the area of the Upper Silesian Coal Basin (USCB). Number of studies demonstrate that the distribution of induced seismic activity in the USCB is bimodal which is already proved in mining seismology [16, 10, 11, 12, 13,27, 6,4, 2, 3, 5 14]. The high-energy mode is represented by high-power tremors occurring as the result of "cooperation" between exploitation stress and tectonic stress. The faults in USCB, especially those of tectonic stress-related nature, may be potential locations of high-energy tremor occurrence. Thus, it is possible to locate the areas with potential epicenters of the high-energy tremors. Tectonics also leads to the disturbance in seismic wave propagation from the epicenter. This paper analyzes the influence of Rydułtowy fault on the example of the tremor in "Rydułtowy" from 22 February 2013.
PL
W artykule przeprowadzono statystyczną analizę szkód górniczych, które powstały w wyniku wstrząsów w dniach 21 kwietnia 2011 roku i 7 czerwca 2013 roku w KWK „Rydułtowy-Anna" w powiązaniu z lokalną tektoniką. Badaniami objęto okres od 2006 roku i do szczegółowej analizy wybrano wyżej wymienione wstrząsy, w wyniku których powstało najwięcej szkód górniczych. Obydwa wstrząsy miały charakter regionalny i objęły swoim zasięgiem znaczny obszar. Statyczna analiza wykazała, że dominującym kierunkiem lokalnej tektoniki szkód górniczych w obu przypadkach, czyli powstałych po wstrząsach w dniach 21 kwietnia 2011 roku i 7 czerwca 2013 roku, jest kierunek zbliżony do równoleżnikowego. Jak wykazała przeprowadzona w niniejszym artykule statystyczna analiza azymutów uskoków w rejonu KWK „Rydułtowy-Anna" jest to kierunek zbliżony do kierunku lokalnej tektoniki.
EN
This paper presents a statistical analysis of mine damage, which occurred as the result of tremors from 21 April 2011 and 7 June 2013 in "Rydułtowy-Anna" mine, against the background of the local tectonics. The research covers the period from 2006 on. The detailed analysis includes the above-mentioned tremors which caused most damage. Both of the tremors occurred regionally, reaching substantial area. The statistical analysis showed that the dominant direction of damage in both cases, which is those from 21 April 2011 and 7 June 2013, is approaching the latitudinal one. As the statistical analysis of the fault´s azimuth in the area of "Rydułtowy-Anna" mine showed, this direction is close to the direction of the local tectonics.
first rewind previous Strona / 9 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.