Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 294

Liczba wyników na stronie
first rewind previous Strona / 15 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sztuczna sieć neuronowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 15 next fast forward last
EN
The article contains a review of selected classification methods of dermatoscopic images with human skin lesions, taking into account various stages of dermatological disease. The described algorithms are widely used in the diagnosis of skin lesions, such as artificial neural networks (CNN, DCNN), random forests, SVM, kNN classifier, AdaBoost MC and their modifications. The effectiveness, specificity and accuracy of classifications based on the same data sets were also compared and analyzed.
PL
Artykuł zawiera przegląd wybranych metod klasyfikacji obrazów dermatoskopowych zmian skórnych człowieka z uwzględnieniem różnych etapów choroby dermatologicznej. Opisane algorytmy są szeroko wykorzystywane w diagnostyce zmian skórnych, takie jak sztuczne sieci neuronowe (CNN, DCNN), random forests, SVM, klasyfikator kNN, AdaBoost MC i ich modyfikacje. Porównana i przeanalizowana została również skuteczność, specyficznośc i dokładność klasyfikatów w oparciu o te same zestawy danych.
EN
Epilepsy is a widely spread neurological disorder caused due to the abnormal excessive neural activity which can be diagnosed by inspecting the electroencephalography (EEG) signals visually. The manual inspection of EEG signals is subjected to human error and is a tedious process. Further, an accurate diagnosis of generalized and focal epileptic seizures from normal EEG signals is vital for the supervision of pertinent treatment, life advancement of the subjects, and reduction in cost for the subjects. Hence the development of automatic detection of generalized and focal epileptic seizures from normal EEG signals is important. An approach based on tunable-Q wavelet transform (TQWT), entropies, Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) is proposed in this work for detection of epileptic seizures and its types. Two EEG databases namely, Karunya Institute of Technology and Sciences (KITS) EEG database and Temple University Hospital (TUH) database consisting of normal, generalized and focal EEG signals is used in this work to analyze the performance of the proposed approach. Initially, the EEG signals are decomposed into sub-bands using TQWT and the non-linear features like log energy entropy, Shannon entropy and Stein's unbiased risk estimate (SURE) entropy is computed from each sub-band. The informative features from the computed feature vectors are selected using PSO and fed into ANN for the classification of EEG signals. The proposed algorithm for KITS database achieved a maximum accuracy of 100% for four experimental cases namely, (i) normal-focal, (ii) normal-generalised, (iii) normal-focal + generalised and (iv) normal-focal-generalised. The TUH database achieved an accuracy of 95.1%, 97.4%, 96.2% and 88.8% for the four experimental cases. The proposed approach is promising and able to discriminate the epileptic seizure types with satisfactory classification performance.
EN
Inaccurate estimation in highway projects represents a major problem facing planners and estimators, especially when data and information about the projects are not available, and therefore the need to use modern technologies that addresses the problem of inaccuracy of estimation arises. The current methods and techniques used to estimate earned value indexes in Iraq are weak and inefficient. In addition, there is a need to adopt new and advanced technologies to estimate earned value indexes that are fast, accurate and flexible to use. The main objective of this research is to use an advanced method known as artificial neural networks to estimate the TSPI of highway buildings. The application of artificial neural networks as a new digital technology in the construction industrial in Republic of Iraq is absolutely necessary to ensure successful project management. One model built to predict the TCSPI of highway projects. In this current study, artificial neural network model were used to model the process of estimating earned value indexes, and several cases related to the construction of artificial neural networks have been studied, including network architecture and internal factors and the extent of their impact on the performance of artificial neural network models. Easy equation was developed to calculate that TSPI. It was found that these networks have the ability to predict the TSPI of highway projects with a very outstanding saucepan of reliability (97.00%), and the accounting coefficients (R) (95.43%).
4
PL
W badaniach podjęto próbę wykorzystania ultrasłabej emisji fotonowej do oceny jakości wybranych surowców biologicznych. Sprawdzono poziom wtórnej luminescencji z trzech rodzajów czekolad: gorzkiej, mlecznej oraz białej. Do przeprowadzenia pomiarów użyto stanowiska wyposażonego w fotopowielacz, służący do identyfikacji pojedynczych fotonów. Odnotowano znaczne zróżnicowanie w poziomie emisyjności fotonów z wybranych produktów. Dokonano analizy wyników porównując je z zawartością poszczególnych składników odżywczych. Zastosowano sztuczne sieci neuronowe do określenia zależności pomiędzy poszczególnymi zmiennymi oraz do klasyfikacji rodzaju czekolady na podstawie liczby emitowanych przez nią fotonów.
EN
The research attempts to use ultra-low photonic emission to assess the quality of selected biological raw materials. The level of secondary luminescence from three kinds of chocolate: dark, milk and white. A station equipped with a photomultiplier used to identify individual photons was used to do the measurements. There was a appreciable difference in the emissivity level of photons from selected products. The results were compared comparing them with the content of various nutrients. Artificial neural networks were used to check the relationships between individual variables and to classify chocolate based on the number of photons it emits.
EN
А method for load distribution in the network 0,4/0,23 kV using artificial neural networks is proposed. Types of artificial neural networks are analyzed and a solution to this task based on neural network multilayer perception is proposed. A neural network structure is built which makes recommendations for the uniform distribution of loads in the network based on statistical information. On the basis of the neural network, software for the uniform distribution of loads between phases of the network is created.
PL
W pracy zaproponowano metodę rozkładu obciążeń w sieci 0,4/0,23 kV za pomocą sztucznej sieci neuronowej. Przeanalizowano typy sztucznych sieci neuronowych oraz zaproponowano rozwiązanie wymienionego zadania na podstawie wielostrefowego perceptronu. Opracowano strukturę sieci neuronowej, która daje polecenia, co do równomiernego rozkładu obciążeń w sieci, wychodząc z informacji statystycznej. Dzięki sieci neuronowej tworzone jest oprogramowanie do równomiernego rozkładu obciążeń między fazami sieci.
EN
The main purpose of this study is the multicriterion optimization in a dynamic context of the operation of an industrial electrostatic separation process with rotating electrode. A study of the operation of this process, performed by using an artificial neural network (ANN), has shown the complexity of adjusting the control variables for use in the industrial field. In this context, a multifactorial control approach has been proposed using meta-heuristics based on artificial intelligence.
PL
W artykule zaprezentowano multikryterialną optymalizację przemysłowego separatora elektrostatycznego z ruchomymi elektrodami. Do optymalizacji wykorzystano sztuczne sieci neuronowe.
7
Content available remote Industrial processes control with the use of a neural tomographic algorithm
EN
This paper presents the original Electrical Impedance Tomography (EIT) imaging algorithm in relation to physic-chemical processes of crystallization. Thanks to the developed method based on artificial neural networks (ANN), it was possible to develop an algorithm that could allow effective detection of crystals and other inclusions inside the reactor filled with non-Newtonian fluid. The neural controller contains a structure of independent neural networks. The number of ANNs corresponds to the resolution of the output image mesh.
PL
W artykule przedstawiono oryginalny algorytm obrazowania z wykorzystaniem elektrycznej impedancji tomograficznej (EIT) w odniesieniu do fizykochemicznych procesów krystalizacji. Dzięki opracowanej metodzie opartej na sztucznych sieciach neuronowych (SSN) możliwe było opracowanie algorytmu, który umożliwiłby skuteczne wykrywanie kryształów i innych wtrąceń wewnątrz reaktora wypełnionego płynem nienewtonowskim. Sterownik neuronowy składa się z systemu niezależnych sieci neuronowych. Liczba SSN odpowiada rozdzielczości siatki obrazu wyjściowego.
PL
Dla potrzeb takiej identyfikacji osób przebywających w pomieszczeniach budynu, opracowany został algorytm profilowania i identyfikacji osobowej z zastosowaniem sztucznych sieci neuronowych – neuronową identyfikacją organicznego profilu osobowego (NIOPO – ang. Neural identification of an organic personal profile NIOPP). Identyfikacja neuronowa, wykorzystuje pomiary koncentracji gazów, których proporcje oraz skład są cechą indywidualną dla każdego człowieka.
EN
For the purpose of such identification of people staying in the building's premises, a profiling and personal identification algorithm was developed with the use of artificial neural networks - neural identification of the organic personal profile (NIOPP). Neural identification, uses measurements of gas concentrations whose proportions and composition are an individual feature for every human being.
EN
Multiphase flow meters are used to measure the water-liquid ratio (WLR) and void fraction in a multiphase fluid stream pipeline. In the present study, a system of multiphase flow measurement has been designed by application of three thallium-doped sodium iodide scintillators and a radioactive source of 133Ba simulated by Monte Carlo N-particle (MCNP) transport code. In order to capture radiations passing across the pipe, two direct detectors have been installed on opposite sides of the radioactive source. Another detector has been placed perpendicular to the transmission beam emitted from the 133Ba source to receive radiations scattered from the fluid flow. Simulation was done by the MCNP code for different volumetric fractions of water, oil, and gas phases for two types of flow regimes, namely, homogeneous and annular; training and validation data have been provided for the artificial neural network (ANN) to develop a computation model for pattern recognition. Depending on applications of the neural system, several structures of ANNs are used in the current paper to model the flow measurement relations, while the detector outputs are considered as the input parameters of the neural networks. The first, second, and third structures benefit from two, three, and five multilayer perceptron neural networks, respectively. Increasing the number of ANNs makes the system more complicated and decreases the available data; however, it increases the accuracy of estimation of WLR and gas void fraction. According to the results, the maximum relative difference was observed in the scattering detector. It was clear that transmission detectors would demonstrate the difference between the flow regimes as well. It is necessary to note that the error calculated by the MCNP simulator is <0.5% for the direct detectors (TR1 and TR2). Due to the difference between the data of the two flow regimes and the errors of data in the simulation codes of the MCNP, it was possible to separate these flow regimes. The effect of changing WLR on the efficiency for a constant void fraction confi rms a considerable variance in the results of annular and homogeneous flow s occurring in the scattering detector. There is a similar trend for the void fraction; hence, one can easily distinguish changes in efficiency due to the WLR. Analysis of the simulation results revealed that in the proposed structure of the multiphase flow meter and the computation model used for simulation, the two flow regimes are simply distinguishable.
EN
This work is aimed at developing relations between the pertinent variables that affect drilling process of stainless steel using artificial neural network. The experiments were conducted on vertical CNC machining centre. The parameters used were spindle speed and feed rate. The effect of machining parameters on entry burr height, exit burr height and surface roughnesswas experimentally evaluated for different spindle speeds and feed rates. A model was established between the drilling parameters and experimentally obtained data using ANN. The predicted values and measured values are fairly close, which indicates that the developed model can be effectively used to predict the burr height and surface roughness in drilling of stainless steel. Genetic algorithm (GA) technique was used in this work to identify the optimized drilling parameters. Confirmation test was conducted with the optimized parameters and it was found that confirmation test results were similar to that of GA-predicted output values.
EN
In this research study, a combination of lower and upper bound finite element limit analysis (FELA) and artificial neural network (ANN) has been adopted in order to forecast critical seismic coefficients (kc) of homogeneous earth dams (HED) subjected to pseudo-static seismic loading. To achieve this, the results of kc obtained by OptumG2 software were used in the development of the ANN and MR models. The ANN models have shown higher prediction performance than the MR models based on the performance indices. The most appropriate architecture was found 8-14-1, as this gave the best kc predict with the minimum statistical measures of error and the high determination coefficient (> 99%). Consequently, the ANN model can be used to easily and accurately predict kc value of the HED as the best substitute for the conventional methods.
EN
Automatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and self-organizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’ and phonology experts’ speech was selected for analyses. For the purpose of the present study, a sub-list of 103 words containing the English alveolar lateral phoneme /l/ was compiled. The list includes ‘dark’ (velarized) allophonic realizations (which occur before a consonant or at the end of the word before silence) and 52 ‘clear’ allophonic realizations (which occur before a vowel), as well as voicing variants. The recorded signals were segmented into allophones and parametrized using a set of descriptors, originating from the MPEG 7 standard, plus dedicated time-based parameters as well as modified MFCC features proposed by the authors. Classification methods such as ANNs, the kNN and the SOM were employed to automatically detect the two types of allophones. Various sets of features were tested to achieve the best performance of the automatic methods. In the final experiment, a selected set of features was used for automatic evaluation of the pronunciation of dark /l/ by non-native speakers.
13
EN
The paper describes the selected methods of adaptive control of the pulverized coal combustion process overview with various types of prognostic models. It was proposed to use a class of control methods that are relatively well established in industrial practice. The presented approach distinguishes the use of an additional source of information in the form of signals from an optical diagnostic system and models based on selected deep structures of recurrent networks. The research aim is to increase the efficiency of the combustion process in the power boiler, taking into account the EU emission standards, leading in consequence to sustainable energy and sustainable environmental engineering.
PL
W artykule opisano wybrane metody adaptacyjnego sterowania przeglądem procesu spalania pyłu węglowego z wykorzystaniem określonych modeli prognostycznych. Zaproponowano użycie metod, które są stosunkowo dobrze znane w praktyce przemysłowej. Przedstawione podejście wyróżnia wykorzystanie dodatkowego źródła informacji w postaci sygnałów z optycznego systemu diagnostycznego i modeli opartych na strukturach sieci głębokich. Badania mają na celu zwiększenia efektywności procesu spalania w kotle energetycznym, z uwzględnieniem norm emisji UE, prowadząc w konsekwencji do zrównoważonej energii i zrównoważonej inżynierii środowiska.
EN
The structure of the artificial neural network (ANN) to support the selection of organic coatings was developed and verified, and its learning process was carried out. A simulation of the operation of the network was also carried out, which showed that programming of the coating system selection process can be much faster and more accurate, which is important for a system used in industrial conditions.
PL
Opracowano i zweryfikowano strukturę sztucznej sieci neuronowej (SSN) służącej do wspomagania procesu doboru powłok organicznych oraz przeprowadzono jej proces uczenia. Dokonano również symulacji działania przedmiotowej sieci, która wykazała, że programowanie procesu doboru systemu powłokowego może być o wiele szybsze i dokładniejsze, co ma istotne znaczenie dla systemu użytkowanego w warunkach przemysłowych.
EN
The purpose of the work was to predict the selected product parameters of the dry separation process using a pneumatic sorter. From the perspective of application of coal for energy purposes, determination of process parameters of the output as: ash content, moisture content, sulfur content, calorific value is essential. Prediction was carried out using chosen machine learning algorithms that proved to be effective in forecasting output of various technological processes in which the relationships between process parameters are non-linear. The source of data used in the work were experiments of dry separation of coal samples. Multiple linear regression was used as the baseline predictive technique. The results showed that in the case of predicting moisture and sulfur content this technique was sufficient. The more complex machine learning algorithms like support vector machine (SVM) and multilayer perceptron neural network (MPL) were used and analyzed in the case of ash content and calorific value. In addition, k-means clustering technique was applied. The role of cluster analysis was to obtain additional information about coal samples used as feed material. The combination of techniques such as multilayer perceptron neural network (MPL) or support vector machine (SVM) with k-means allowed for the development of a hybrid algorithm. This approach has significantly increased the effectiveness of the predictive models and proved to be a useful tool in the modeling of the coal enrichment process.
PL
Celem pracy było prognozowanie wybranych parametrów produktu procesu suchej separacji za pomocą sortera pneumatycznego. Z punktu widzenia zastosowania węgla do celów energetycznych niezbędne jest określenie parametrów procesowych wydobycia, takich jak: zawartość popiołu, zawartość wilgoci, zawartość siarki czy wartość kaloryczna. Prognozowanie przeprowadzono przy użyciu wybranych algorytmów uczenia maszynowego, które okazały się skuteczne w prognozowaniu wyjścia różnych procesów technologicznych, w których zależności między parametrami procesu są nieliniowe. Źródłem danych wykorzystanych w pracy były eksperymenty procesu suchej separacji węgla. Zastosowano wieloraką regresję liniową jako bazową metodę predykcyjną. Wyniki pokazały, że w przypadku przewidywania zawartości wilgoci i siarki technika ta była wystarczająca. Bardziej złożone algorytmy uczenia maszynowego, takie jak maszyna wektorów nośnych (SVM) i perceptron wielowarstwowy (MLP) zostały wykorzystane i przeanalizowane w przypadku zawartości popiołu i wartości opałowej. Ponadto wdrożono technikę k-średnich. Rolą analizy skupień było uzyskanie dodatkowych informacji na temat próbek węgla będących wejściem procesu. Połączenie technik, takich jak perceptron wielowarstwowy (MLP) lub maszyna wektorów nośnych (SVM) z metodą k-średnich pozwoliło na opracowanie hybrydowego algorytmu. Takie podejście znacznie zwiększyło efektywność modeli predykcyjnych i okazało się użytecznym narzędziem w modelowaniu procesu wzbogacania węgla.
PL
W artykule przedstawiono zastosowanie sztucznej sieci neuronowej do prognozowania miesięcznego zużycia energii dla odbiorców zasilanych z elektroenergetycznych dystrybucyjnych terenowych sieci średnich napięć. Przedstawiono opis zastosowanej sieci neuronowej oraz rezultaty wykonanych prognoz. Podano również wartości błędów prognoz realizowanych przez zastosowaną sieć neuronową.
EN
Presented is the application of an artificial neural network in forecasting of the monthly electric energy consumption by customers connected to local MV distribution networks. Presented is a description of the applied neural network and the results of the performed ­forecasts. Given are also error values of forecasts realized by the applied neural network.
17
Content available remote Prediction of water quality in Riva River watershed
EN
The Riva River is a water basin located within the borders of Istanbul in the Marmara Region (Turkey) in the south-north direction. Water samples were taken for the 35 km drainage area of the Riva River Basin before the river flows into the Black Sea at 4 stations on the Riva River every month and analyses were carried out. Changes were observed in the quality of water from upstream to downstream. For this purpose, the spatial and temporal variations of water quality were investigated using 13 water quality variables with the ANOVA test. It was observed that COD, DO, S and BOD were important in determining the spatial variation. On the other hand, it was found out that all the variables were effective in determining the temporal variation. Moreover, the correlation analysis which was carried out in order to assess the relations between water quality variables showed that the variables of BOD-COD, BOD-EC, COD-EC, BOD-T and COD-T were correlated and the regression analysis showed that COD, TKN and NH4-N explained BOD and BOD, NH4-N, T and TSS explained COD by approximately 80 %. Consequently, the Artificial Neural Network (ANN), Decision Tree and Logistic Regression models were developed using the data of training set in order to predict the water quality classes of the variables of COD, BOD and NH4-N. Quality classes were predicted for the variables by inputting the data of testing set into the developed models. According to these results, it was seen that the ANN was the best prediction model for COD, the Decision Tree for BOD and the ANN and Decision Tree for NH4-N.
EN
The work presents the investigations carried out on a spark-ignition internal combustion engine with gasoline direct injection. The tests were carried out under conditions of simulated damage to the air temperature sensor, engine coolant temperature sensor, fuel pressure sensor, air pressure sensor, intake manifold leakage, and air flow disturbances. The on-board diagnostic system did not detect any damage because the sensor indications were within acceptable limits. The engine control system in each case changed its settings according to the adaptive algorithm. Signal values in cycles from all available sensors in the engine control system and data available in the on-board diagnostic system of the car were recorded. A large amount of measurement data was obtained. They were used to create a statistical function that classifies sensor faults using an artificial neural network. A set of training data has been prepared accordingly. During learning the neural network, a hit rate of over 99% was achieved.
PL
W pracy przedstawiono badania przeprowadzone na silniku spalinowym o zapłonie iskrowym z bezpośrednim wtryskiem paliwa. Testy wykonano w warunkach symulowanych uszkodzeń czujników temperatury powietrza, temperatury cieczy chłodzącej silnik, ciśnienia paliwa, ciśnienia powietrza, nieszczelności w kolektorze dolotowym, zaburzenia przepływu powietrza. System diagnostyki pokładowej nie wykrył żadnego uszkodzenia, ponieważ wskazania czujników mieściły się w granicach tolerancji. System sterowania silnika w każdym przypadku zmieniał swoje ustawienia według adaptacyjnego algorytmu. Rejestrowano cyklowe wartości sygnałów ze wszystkich dostępnych czujników w systemie sterowania silnika oraz dane dostępne w systemie diagnostyki pokładowej samochodu. Otrzymano dużą ilość danych pomiarowych. Wykorzystano je do utworzenia statystycznej funkcji klasyfikującej uszkodzenia przy pomocy sztucznej sieci neuronowej. Odpowiednio przygotowano zbiór danych uczących. W trakcie uczenia sieci neuronowej osiągnięto współczynnik trafień powyżej 99%.
EN
The aim of this paper is to answer the question: Are the Łódź Hills useful for electrical energy production from wind energy or not? Due to access to short-term data related to wind measurements (the period of 2008 and 2009) from a local meteorological station, the measure – correlate – predict approach have been applied. Long-term (1979‒2016) reference data were obtained from ECWMF ERA-40 Reanalysis. Artificial neural networks were used to calculate predicted wind speed. The obtained average wind speed and wind power density was 4.21 ms–1 and 70 Wm–1, respectively, at 10 m above ground level (5.51 ms–1, 170 Wm–1 at 50 m). From the point of view of Polish wind conditions, Łódź Hills may be considered useful for wind power engineering.
EN
Coronary artery disease (CAD) is one of the leading causes of mortality and morbidity. There is a need to develop a simple, reliable, and non-invasive screening tool to diagnose CAD. Prior studies reported that turbulent blood flow due to stenosed coronary arteries causes weak CAD murmurs. Analysis of phonocardiogram (PCG) signals can be useful to detect these murmurs. In this work, we propose a new multi-channel PCG-based system to classify CAD-affected and normal subjects, and it does not require any additional reference signal, such as an electrocardiogram (ECG) signal. The proposed system simultaneously acquires PCG signals from four different auscultation sites on the chest. It extracts five different features from time and frequency domains of the PCG signals. The two-class classification is done in a machine learning framework by employing an artificial neural network (ANN) classifier. The classification performances are evaluated for each channel as well as for their combinations. Experimental results show that the proposed sub-band-based spectral features perform well for both clean and noisy data. An accuracy of 82.57% is obtained using the combination of the signals acquired from tricuspid, mitral, and midaxillary regions. The multi-channel system gives more than 4% relative improvement over the best performance obtained by its single-channel counterpart, and the proposed features outperform earlier used features.
first rewind previous Strona / 15 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.