Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  liquid disintegration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote Relaxation and breakup of a cylindrical liquid column
Instability of a capillary wave and breakup of a square cylindrical liquid column during its relaxation have been investigated numerically by simulating three-dimensional Navier-Stokes equations. For this investigation a computer code based on the volume-of-fluid (VOF) method has been developed and validated with published experimental results. The result shows that the agreement of numerical simulation is quite good with the experimental data. The code is then used to study the capillary wave and breakup phenomena of the liquid column. The investigation shows the underlying physics during relaxation of the square cylindrical liquid column, illustrates the formation and propagation of the capillary wave and breakup processes. The breakup behavior for the present configuration of the liquid column shows some significant differences from those predicted by conventional jet atomization theories. The formation of the capillary wave is initiated by the surface tension on the sharp edge of the square end of the cylinder and the propagation of the wave occurs due to the effect of surface tension force on the motion of the fluid. The propagation of the capillary wave to the end of the liquid column causes a disturbance in the system and makes the waves unstable which initiates the breakup of the liquid column. The characteristics of the capillary wave show that the amplitude of the swell grows faster than the neck of the wave and that of the tip wave grows much faster than other waves. The velocity of the liquid particle is dominated by the pressure in the liquid column.
Atomization of a liquid jet in a convergent-divergent gas nozzle is studied both theoretically and experimentally. The jet enters the nozzle through a central tube and is primarily disintegrated in the vicinity of the tube exit. An integral model allows cumbersome calculations to be avoided. The model uses idealized schemes for the coarsely and finely dispersed mixture after primary and secondary atomization, respectively. Comparison of theoretical results with experimental data demonstrates the applicability of the model for prediction of the atomizer's geometry and operating conditions necessary for producing the finest possible mixture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.