Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  involutions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote Remarks on fixed points of involutions of order n>2 in Hilbert spaces
Suppose that C is a nonempty bounded closed and a convex subset of a Hilbert space H and T: C -> C is k-lipschitzian or uniformly k-lipschitzian mapping which has the property that, for some n > 1, Tn is the identity. The author determines a function ko(n) > 1 such that for k < ko(n) mapping T has a fixed points in C.
Content available remote Remarks on fixed points for involutions of order n=3 in Banach space
In this paper we study the problem of existence of fixed points of k-Lipschitzian and uniformly k-Lipschitzian mappings (k > 1) denned on nonempty closed convex subset of Banach space. Using very simple method we extend Kirk and Linhart's result [5, 8] in the case of involution of order n = 3.
Content available remote Functions defined on spheres - remarks on a paper by K. Zarankiewicz
First we show that for any mapping f : [S^2] --> R there exist two antipodal points p, -p [belongs to S^2] and a continuum C [is a subset of S^2] connecting them such that f is constant on C (Corollary 3.2)^(1); if f is equivariant (with respect to the canonical involutions) then C can be chosen symmetric (Corollary 3.2 or Lemma 5.4). This, combined with a result about the equalization of mappings (Lemma 4.1), slightly improves a classical result of Livesay [8] and Zarankiewicz [12], leading to the notion of functional rectangle of a mapping [S^2] --> R. Such "rectangles" are symmetric continua in [S^2]. Next wre prove that for any mapping f : S^n --> R, n [is greater than or equal to 2], the Borsuk-Ulam set of f, A(f) = {x [belongs to S^n] : f(x) = f(-x)}, contains a unique symmetric component D; it separates [S^n] between antipodal points x, -x for each x [belongs to S^n]\D (Theorem 5.6). Each functional rectangle of f lies in the symmetric component (Corollary 5.7). Some open problems have been posed in the final section.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.