Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  data association
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote Non-linear multimodal object tracking based on 2d lidar data
The contribution introduces a novel approach for tracking objects based on two-dimensional lidar data. As a central tracking engine, we employ a particle-filter-based solution which is capable of modelling non-linear dynamic processes as well as non-Gaussian noise distributions for the underlying process and sensor as well. In contrast to other lidar-based tracking approaches, no newly detected objects have to be associated to already known objects in an explicit manner. Since our weighting function is multi-modal, the association is done by the filter itself.
In this paper, we present filtering algorithm to perform accurate estimation in jump Markov nonlinear systems, in case of multi-target tracking. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models change during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate tracking. In order to deal with this problem, the IMM algorithm was combined with the Unscented Kalman Filter (UKF). Even if the later algorithm proved its efficacy in nonlinear model case, it presents a serious drawback in the case of non Gaussian noise. To deal with this problem we propose to substitute the UKF with the Particle Filter (PF). To overcome the problem of data association, we propose the use the JPDA approach. To reduce the computational burden of this technique, we choose firstly the most likely feasible events by applying a Genetic Algorithm; finally the derived algorithm from the combination of the IMM-PF algorithm and the GA-JPDA approach is noted GA-JPDA-IMM-PF. To insure a more reduction of the computation complexity of the latter data association approach, we propose a fuzzy data association approach which we combine with the IMM-PF estimator, the derived algorithm is noted fuzzy IMM-PF. Finally the two algorithms are compared according to the target loss rate inferred by each of them.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.