Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  Western Anatolia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Western Anatolia has been formed by the motions of the African plate, Arabian plate and Hellenic Subduction zone. The Hellenic Subduction zone, which has high seismicity, is the main tectonic feature of the eastern Mediterranean Sea related to the subduction of the African Plate beneath the Aegean Sea Plate. The Hellenic Subduction zone has a complex lithospheric structure and shows complex differences in the Aegean Sea in terms of continental crust thickness and mantle velocity. In the study area, the directions of Global Positioning System (GPS) velocity vectors which are towards SE change towards S from North of Western Anatolia to Hellenic Subduction zone. It is thought that the factor which controls this mechanism is the shear force or subduction zone located in Aegean Sea. Western Anatolia region, which is located in Western Anatolia Extensional province, includes several morphologically significant N–S trending active normal faults. Besides, the NE–SW and NW–SE trending faults, which their kinematic features change from north to south, are very effective on the tectonic regime of the region. Additionally, for determining the boundaries of these tectonic elements, the Complete Spherical Bouguer (CSB) gravity anomaly of study area was calculated by using World Gravity Map (WGM2012) model. Moreover, in historical and instrumental studies, the high seismicity of the study area is remarkable. It is thought that this case is also related with the mechanism which oriented the GPS velocity vectors to southward. Consequently, the dominant kinematic structure of the region was classified by combining the GPS velocity vectors computed for Izmir and its surroundings bounded by Western Anatolia, Aegean Sea and Eastern Mediterranean and the CSB gravity anomaly. Finally, the results were interpreted together with focal depth distributions of earthquakes and Bouguer gravity data.
Western Anatolia has an extensional tectonic regime and the characteristics of the deformation in the continental crust observed in Aegean Region have a very complex structure. In our study area, the İzmir city, Turkey, which is located within this active region, the general geological setting is also rather complex. This first microgravity study in İzmir and its surroundings is related to the determination of active fault zones. It was conducted in the south of İzmir, with the aim to investigate this complex structure in detail through microgravity data collected from six profiles throughout the survey area. The variation in Bouguer values was profoundly investigated along Profile P1 in N-S direction that was delineated to intersect all the tectonic elements. For this reason, Profile P1 was modeled in this study as 2D. As a result, the created gravity model was investigated together with geology, earthquake focal depths, and isostasy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.