Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 36

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  monitorowanie stanu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Industrial high-speed rotating machines entail constant and consistent monitoring to prevent downtime, affecting quantity and quality. Complex machines need advanced intelligent fault diagnosis showing minimal errors. This work offers a MATLAB-based fault diagnosis for sugar industry machines. The vibration behavior of physical industrial machines is obtained, and the signals are provided to a MATLAB program to identify the fault. The information helps to suggest remedies to include in the maintenance schedule. The ease and comprehensible nature of the method reduce time and enhance the reliability of condition monitoring for industrial machines.
EN
Bearings are one of the pivotal parts of rotating machines. The health of a bearing is responsible for the hassle-free operation of a machine. As vibration signatures give intimations of machine failure at an earlier stage, mostly vibration-based condition monitoring is used to monitor bearing’s health for avoiding the risk of failure. In this work, a simulation-based approach is adopted to identify surface defects at ball bearing raceways. The vibration data in time and frequency domain is captured by FFT analyzer from an experimental setup. The time frequency domain conversion of a raw time domain data was carried out by wavelet packet transform, as it takes into account the transients and spectral frequencies. The rotor bearing model is simulated in Ansys. Finally, most influencing statistical features were extracted by employing Principal Component Analysis (PCA), and fed to Multiclass Support Vector Machine (MSVM). To train the algorithm, the simulated data is used whereas the data acquired from FFT analyzer is used for testing. It can be concluded that the defects are characterized by Ball Pass Frequency (BPF) at inner race and outer raceway as indicated in the literature. The developed model is capable to monitor bearing’s health which gives an average accuracy of 99%.
PL
W artykule przedstawiono wyniki prac badawczych dotyczących możliwości monitorowania przez sterownik polowy parametrów pracy wyłączników w celu oceny ich stanu technicznego. Przedstawiono metody pozwalające na weryfikację funkcjonalności wyłączników oraz parametry, które mogą podlegać monitorowaniu. Zaprezentowano też propozycję wymagań dla karty pomiarowej sterownika i algorytmu wnioskującego. Przedstawione wyniki zostały uzyskane w badaniach rozwojowych, do których użyto wyłączników próżniowych typu e2BRAVO i sterowników polowych e2TANGO firmy ELEKTROMETAL ENERGETYKA.
EN
The article presents the research results of the possibility of circuit-breakers condition monitoring by protection relays. The methods for verifying the functionality of the circuit-breakers and the parameters that can be monitored are presented. The proposed requirements for the controller measurement card and the inference algorithm were also presented. The presented results were obtained in development studies for which the vacuum circuit-breakers e2BRAVO and protection relays e2TANGO by ELEKTROMETAL ENERGETYKA was used.
EN
The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
EN
Finding a reliable machines condition monitoring technique has been attracted many researchers to avoid the sudden failure in machines and the unexpected consequences. This work proposes a fault diagnosis of air compressors using frequency-based features and distance metric-based classification. The analyzed experimental datasets contain one healthy condition and seven different fault conditions. Features are extracted from the frequency spectrum, then the best feature sets are selected using MRMR algorithm and eventually the classification is conducted using a distance metric classifier. The results demonstrated the automatic classification with more than 97% correct classification rate. The effect of selected feature set size, training sample size on the classification accuracy is also investigated. From the results, this method of analysis can be used for early detection of faults with very great accuracy.
EN
Worm gearboxes (WG) are often preferred, because of their high torque, quickly reducing speed capacity and good meshing effectiveness, in many industrial applications. However, WGs may face with some serious problems like high temperature at the speed reducer, gear wearing, pitting, scoring, fractures and damages. In order to prevent any damage, loss of time and money, it is an important issue to detect and classify the faults of WGs and develop the maintenance plans accordingly. The present study addresses the application of the deep learning method, convolutional neural network (CNN), in the field of thermal imaging that were gathered from a test rig operating on different loads and speeds. Deep learning approaches, have proven their powerful capability to exploit faulty information from big data and make intelligently diagnostic decisions. Studies concerning the condition monitoring of WGs in the literature are limited. This is the first study on WGs with infrared thermography rather than vibration and sound measurements which have some deficiencies about hardware requirements, restricted measurement abilities and noisy signals. For comparison, CNN was also trained, with vibration and sound data which were collected from the healthy and faulty WGs. The results of fault diagnosis show that thermal image based CNN model on WG has achieved 100% success rate whereas the vibration performance was 83.3 % and sound performance was 81.7%. As a result, thermal image based CNN model showed a better diagnosing performance than the others for WGs. Moreover, condition monitoring of WGs, can be performed correctly with less measurement costs via thermal imaging methods.
PL
W wielu zastosowaniach przemysłowych preferuje się przekładnie ślimakowe, ze względu na ich wysoki moment obrotowy, możliwość szybkiej redukcji prędkości i dobrą sprawność zazębienia. Jednakże przekładnie tego typu narażone są często na poważne problemy, takie jak wysoka temperatura przy reduktorze prędkości czy też zużycie, pitting (wżery), zatarcie, pęknięcie lub uszkodzenie kół zębatych. Zapobiec takim uszkodzeniom, i związanym z nimi stratom finansowym i czasowym, można poprzez wykrywanie i klasyfikowanie błędów przekładni i odpowiednie opracowanie planów konserwacji. Niniejsze badanie dotyczy zastosowania metody głębokiego uczenia oraz splotowych sieci neuronowych (SSN) do monitoringu stanu przekładni na podstawie termogramów zarejestrowanych na stanowisku testowym pracującym przy różnych obciążeniach i prędkościach. Podejścia oparte na uczeniu głębokim umożliwiają efektywne wykorzystanie informacji o błędach pochodzących z dużych zbiorów danych i podejmowanie trafnych decyzji diagnostycznych. Niewiele z dostępnych publikacji poświęconych jest monitorowaniu stanu przekładni ślimakowych. Niniejsza praca jako pierwsza przedstawia badania przekładni ślimakowej z zastosowaniem termografii zamiast zwyczajowo prowadzonych pomiarów drgań i dźwięku, które mają pewne wady dotyczące wymagań sprzętowych, ograniczonych możliwości pomiarowych i głośności sygnałów. SNN opartą na danych termicznych porównano z siecią, którą uczono na zbiorach danych wibracyjnych i akustycznych pochodzących z prawidłowo działających i uszkodzonych przekładni ślimakowych. Wyniki diagnostyki uszkodzeń pokazują, że model SSN przekładni ślimakowej oparty na obrazie termicznym osiągnął stuprocentową (100%) skuteczność, podczas gdy skuteczność modeli opartych na danych wibracyjnych i akustycznych wyniosła, odpowiednio, 83,3% i 81,7%. Tym samym, model SNN oparty na obrazie termicznym pozwalał na trafniejsze diagnozowanie przekładni ślimakowej niż pozostałe modele. Ponadto zastosowanie metod opartych na termografii pozwala na poprawne monitorowanie stanu przy niższych kosztach pomiaru.
EN
The safety and performance of engines such as Diesel, gas or even wind turbines depends on the quality and condition of the lubricant oil. Assessment of engine oil condition is done based on more than twenty variables that have, individually, variations that depend on the engines’ behaviour, type and other factors. The present paper describes a model to automatically classify the oil condition, using Artificial Neural Networks and Principal Component Analysis. The study was done using data obtained from two passenger bus companies in a country of Southern Europe. The results show the importance of each variable monitored for determining the ideal time to change oil. In many cases, it may be possible to enlarge intervals between maintenance interventions, while in other cases the oil passed the ideal change point.
PL
Bezpieczeństwo i wydajność silników takich, jak silniki Diesla czy gazowe, a nawet turbiny wiatrowe, zależą od jakości i stanu oleju smarowego. Stanu oleju silnikowego ocenia się na podstawie ponad dwudziestu zmiennych, z których każda ulega wahaniom w zależności od typu i zachowania silnika oraz innych czynników. W niniejszym artykule opisano model, który pozwala na automatyczną klasyfikację stanu oleju, z wykorzystaniem sztucznych sieci neuronowych i analizy składowych głównych. Badania przeprowadzono na podstawie danych uzyskanych od dwóch przewoźników pasażerskich działających na terenie jednego z krajów położonych na południu Europy. Wyniki pokazują, że każda z monitorowanych zmiennych ma znaczenie dla określenia idealnego czasu na wymianę oleju. Podczas gdy w wielu przypadkach w badanych przedsiębiorstwach możliwe było zwiększenie odstępów czasowych między działaniami konserwacyjnymi, w innych, idealny moment wymiany oleju został przekroczony.
EN
In industrial field, there is an increasing demand for monitoring systems enabling predictive maintenance programs. In this context, the present work concerns the monitoring of distributed wear (pitting) in planetary gearboxes. For this purpose, some metrics of the synchronous average of the vibration signal, based on the statistical moment of the fourth order, are present in literature; in this paper, a new indicator is proposed, namely NA4mod. The effectiveness of this metric in identifying the early stage of pitting has been evaluated by conducting an accelerated life test of about 700 hours on a test bench using a back-to-back configuration. The paper introduces the proposed metric, describes the test, presents and dis-cusses the results. Metric NA4mod exhibits satisfactory capability to detect pitting with better reliability than other metrics in literature. In addition, the metric is shown to be sensitive to both early stage damage and pitting severity in the final stage. Results are verified by means of wavelet-transform analysis.
EN
Condition monitoring and prognosis is a key issue in ensuring stable and reliable operation of mechanical transmissions. Wear in a mechanical transmission, which leads to the production of wear particles followed by severe wear, is a slow degradation process that can be monitored by spectral analysis of oil, but the actual degree of degradation is often difficult to evaluate in practical applications due to the complexity of multiple oil spectra. To solve this problem, a health index extraction methodology is proposed to better characterize the degree of degradation compared to relying solely on spectral oil data, which leads to an accurate estimation of the failure time when the transmission no longer fulfils its function. The health index is extracted using a weighted average method with selection of degradation data with allocation steps for weight coefficients that lead to a reasonable mechanical transmission degradation model. First, the degradation data used as input are selected based on source entropy which can describe the information volume contained in each set of spectral oil data. Then, the weight coefficient of each set of degradation data is modelled by measuring the relative scale of the permutation entropy from the selected degradation data. Finally, the selected degradation data are fused, and the health index is extracted. The proposed methodology was verified using a case study involving a degradation dataset of multispectral oil data sampled from several power-shift steering transmissions.
PL
Monitorowanie i prognozowanie stanu to kluczowa kwestia dla zapewnienia stabilnej i niezawodnej pracy przekładni mechanicznych. Zużycie w przekładni mechanicznej, które prowadzi do wytwarzania cząsteczek zużycia a następnie ciężkiego zużycia, to proces powolnej degradacji, który może być monitorowany poprzez analizę widmową oleju, ale rzeczywisty stopień degradacji często trudno jest ocenić podczas praktycznego użytkowania z uwagi na złożoność wielu widm oleju. W celu rozwiązania powyższego problemu, zaproponowano metodologię ekstrakcji wskaźnika stanu technicznego, aby lepiej scharakteryzować stopień degradacji niż polegając wyłącznie na danych widmowych oleju; pozwala to na dokładne prognozowanie czasu uszkodzenia, gdy przekładnia przestanie spełniać swoją funkcję. Wskaźnik stanu technicznego ekstrahowany jest za pomocą metody średniej ważonej z wyborem danych o degradacji i etapami alokacji dla współczynników wagowych, dając w efekcie odpowiedni model degradacji przekładni mechanicznej. W pierwszym etapie, dane degradacji stosowane jako dane wejściowe wybierane są na podstawie entropii źródłowej, która może opisywać zakres informacji zawarty w każdym zbiorze danych widmowych oleju. Następnie współczynnik wagowy każdego zestawu danych nt. degradacji modelowany jest przez pomiar względnej skali entropii permutacji z wybranych danych degradacji. Na koniec, wybrane dane degradacji są integrowane i ekstrahowany jest wskaźnik stanu technicznego. Zaproponowana metodologia została zweryfikowana przy użyciu studium przypadku obejmującego zbiór wielowidmowych danych dotyczących degradacji oleju pobranego z kilku przekładni kierowniczych wspomaganych.
EN
The use of condition monitoring techniques in wind energy has been recently growing and the average unavailability time of an operating wind turbine in an industrial wind farm is estimated to be less than the 3%. The most powerful approach for gearbox condition monitoring is vibration analysis, but it should be noticed as well that the collected data are complex to analyse and interpret and that the measurement equipment is costly. For these reasons, several wind turbine subcomponents are monitored through temperature sensors. It is therefore valuable developing analysis techniques for this kind of data, with the aim of detecting incoming faults as early as possible. On these grounds, the present work is devoted to a test case study of wind turbine generator slip ring damage detection. A principal component regression is adopted, targeting the temperature collected at the slip ring. Using also the data collected at the nearby wind turbines in the farm, it is possible to identify the incoming fault approximately one day before it occurs.
EN
This paper presents a cointegration-based method for condition monitoring of wind turbines. Analysis of cointegration residuals - obtained from cointegration process of wind turbine data - is used for operational condition monitoring and fault detection. The method has been employed for on-line condition monitoring of a wind turbine drivetrain with a nominal power of 2 MW under varying environmental and operational conditions using only the temperature data of gearbox bearing and generator winding, which were collected by the Supervisory Control and Data Acquisition (SCADA) system. The results show that the proposed method can effectively monitor the wind turbine and reliably detect the gearbox fault.
PL
Artykuł przedstawia metodę kointegracji sygnałów do monitorowania stanu turbiny wiatrowej. Analiza wektorów resztkowych kointegracji wykorzystana została do monitorowania stanu turbiny wiatrowej o mocy nominalnej 2 MW. Diagnostykę turbiny wiatrowej przeprowadzono dla zmiennych warunków środowiskowych i eksploatacyjnych, tylko w oparciu o sygnały temperatury łożyska przekładni i uzwojenia generatora. Sygnały te zostały zgromadzone przez system sterowania, monitorowania oraz wizualizacji SCADA. Wyniki pokazują, że proponowana metoda może skutecznie monitorować turbinę wiatrową i niezawodnie wykryć uszkodzenie przekładni.
EN
The paper focuses on working out an algorithm for spur gear condition monitoring, based on the results of numerical simulation. The nonlinear mathematical model has been used for investigation of the dynamic parameters of the cylindrical spur gear with defective teeth. Backlash between gear teeth, backlash in bearings, time-varying mesh stiffness, and variations of the centre distance have been evaluated in the model. Diagnostic parameters suitable for determining the condition of the gears under investigation have been established. Frequency intervals mostly affected by changes in diagnostic parameters under damage have been found. An algorithm for diagnostics based on mathematical modelling, vibro-acoustic, and acoustic emission methods, and wavelet transform has been worked out.
PL
Celem artykułu było opracowanie algorytmu monitorowania stanu przekładni zębatej w oparciu o wyniki symulacji numerycznej. Przedstawiono nieliniowy model matematyczny, który wykorzystano do badania parametrów dynamicznych przekładni zębatej walcowej z uszkodzonymi zębami. Za pomocą przedstawionego modelu oceniano luz pomiędzy zębami przekładni, luz w łożyskach, zmienną w czasie sztywność zazębienia oraz zmiany odległości osi. Ustalono parametry diagnostyczne odpowiednie dla określenia stanu technicznego badanych przekładni. Znaleziono przedziały częstotliwości odpowiadające zmianom parametrów diagnostycznych wynikającymi z uszkodzenia. Opracowano algorytm diagnostyczny oparty na modelowaniu matematycznym, metodach emisji wibroakustycznej i emisji akustycznej oraz transformacie falkowej.
PL
Polityka konserwacji wpływa na gotowość sprzętu, a tym samym na wydajność i konkurencyjność przedsiębiorstwa. Ważne jest optymalizowanie kosztów cyklu życia (LCC) aktywów, w tym przypadku taboru autobusowego. W artykule przedstawiono metodę utrzymania ruchu polegającą na predykcyjnym monitorowaniu stanu w oparciu o analizę oleju silnikowego w celu oceny potencjalnego wpływu tej zmiennej na gotowość autobusów. Podejście to ma praktyczne konsekwencje jeśli chodzi o koszty utrzymania w trakcie eksploatacji autobusu, a także pozwala na ustalenie najlepszego czasu na wymianę pojazdów taboru. W pracy przedstawiono przegląd ekonomicznych modeli wymiany oraz opracowano model globalny integrujący te modele, ze szczególnym uwzględnieniem gotowości oraz jej zależności od konserwacji oraz kosztów utrzymania ruchu. Czynniki te pomagają określić wielkość floty rezerwowej i zapewnić gotowość taboru.
EN
Maintenance policies influence equipment availability and, thus, they affect a company’s capacity for productivity and competitiveness. It is important to optimize the Life Cycle Cost (LCC) of assets, in this case, passenger bus fleets. The paper presents a predictive condition monitoring maintenance approach based on engine oil analysis, to assess the potential impact of this variable on the availability of buses. The approach has implications on maintenance costs during the life of a bus and, consequently, on the determination of the best time for bus replacement. The paper provides an overview of economic replacement models through a global model, with an emphasis on availability and its dependence on maintenance and maintenance costs. These factors help to determine the size of the reserve fleet and guarantee availability.
PL
Jedną z nieniszczących metod detekcji uszkodzeń konstrukcji jest obserwacja zmian jej parametrów dynamicznych. Postacie drgań swobodnych i odpowiadające im częstotliwości można otrzymać w wyniku analizy modalnej na podstawie pomiaru przyspieszeń wybranych punktów układu, będących odpowiedzią na znane wymuszenie. Zmiany parametrów dynamicznych zależą nie tylko od stanu konstrukcji, ale również od czynników zewnętrznych towarzyszących pomiarom. W artykule przedstawiono wpływ temperatury na zmiany parametrów dynamicznych układu na przykładzie dwukondygnacyjnej, stalowej ramy portalowej oraz porównano ich wielkość ze zmianami wywołanymi symulowanym uszkodzeniem w postaci luzowania łączników w połączeniach rygiel-słup.
EN
One of the non-destructive testing methods is damage detection based on changes in dynamic parameters of the structure. For this purpose modal analysis could be used, where natural frequencies and forms are calculated using measured data. During experiment an examined structure is excited by external force with known value, and its vibration (accelerations in some selected points) are measured. This method was used in presented research. Unfortunately not only material characteristics or geometric and static feature of the system have an influence of the dynamic parameters. Also the external conditions during measurements can change the dynamic response of the structure. The aim of this subject was checking, is temperature affect on the dynamic parameters and how big are the changes, the source of which is the temperature. To evaluate the scale of described changes, in a laboratory model of two-storey steel portal frame, in each of beam-tocolumn connection separately, four from eight bolts were loosed. This action had to simulate the damage of the structure. In this paper the effects of temperature and simulated damages were compared.
PL
W artykule przedstawiono wyniki badań własnych oraz wybrane dane literaturowe dotyczące identyfikacji stanu wytężenia materiału przy pomocy niskoczęstotliwościowej impedancji elektromagnetycznej. Przedstawiono motywację badań i podstawy teoretyczne metody. Zwrócono uwagę na niejawny, nieliniowy związek istniejący pomiędzy parametrami mechanicznymi i elektromagnetycznymi materiału a stanem jego wytężenia. Omówiono tor pomiarowy używany w badaniach. Omawianą tematykę zobrazowano przykładami. Na podstawie wyników badań wykazano możliwość stosowania taniego mostka LCR do wiarygodnego diagnozowania stanu wytężenia materiału.
EN
The results of research and selected literature data concerning the identification of the state of material effort with using low-frequency electromagnetic impedance have been presented in the article. Motivation of research and theoretical foundations of the method are presented. Attention has been paid to implicit non-linear relationship between the mechanical and electro-magnetic properties of material and the effort of the state. Measuring circuit used in research has been presented. Discussed topics illustrated samples. Based on the result of studies it demonstrated the possibility of using low-cost LCR bridge to reliably diagnose the state of material effort.
PL
Artykuł zawiera opis symulatora układu przepływowego dla wybranego fragmentu obiegu ORC. Opisany symulator bazuje na obiegu wody, traktowanej jako czynnik roboczy. W symulatorze tym rozpatrywane są różne zadania procesowe, jak regulacja natężenia przepływu czynnika roboczego i regulacja poziomu czynnika roboczego w zbiorniku. Układ sterowania symulatora pozwala na kontrolowanie tego układu oraz na zadawanie różnych niesprawności. Proces akwizycji zmiennych procesowych jest prowadzony za pomocą sterownika PLC. Gromadzone są zarówno wartości analogowe jak i wartości dyskretne. Aktualne wartości zmiennych procesowych są zapisywane na serwerze OPC. Zgromadzone na tym serwerze dane są udostępniane tworzonym i rozwijanym systemom diagnostycznym.
PL
W artykule przedstawiono analizę błędów eksploatacyjnych powodujących wystąpienie stanu zagrożenia, awarii lub katastrofy budowlanej. Podano przykłady oceny stanu technicznego wadliwie monitorowanych obiektów. Zaprezentowano wdrożone koncepcje robót wzmacniających. Sformułowano zalecenia w zakresie monitorowania obiektów użytkowanych po wzmocnieniu lub rekonstrukcji.
EN
The article scutinizes the analysis of exploitation mistakes that lead to hazardous situations, failures and building catastrophes. Moreover, examples of assessment of technical conditions of improperly monitored buildings, as well as reinforcement concepts, are presented. Guidelines and recommendations regarding monitoring of technical condition of exploited buildings subjected to reinforcement or reconstruction were formulated.
18
Content available remote Monitorowanie stanu bezpieczeństwa obiektów budowlanych w czasie eksploatacji
PL
W artykule zdefiniowano pojęcie „monitorowanie bezpieczeństwa obiektów budowlanych” oraz wskazano rodzaje obiektów budowlanych, które powinny podlegać monitorowaniu podczas ich eksploatacji. Omówiono zasady działania monitoringu i przykłady zastosowania tego typu systemów na trzech obiektach sportowych.
EN
The paper specifies what is meant by monitoring the safety of buildings and indicates the type of such buildings that should be subject of monitoring during their use. The principles of monitoring systems have been described and the examples of Structural Health Monitoring systems installed on three sporting objects have been presented.
PL
W artykule przedstawiono dwie metody określania stanu izolacji kabli SN – w oparciu o kontrolę upływności oraz o test z użyciem generatora wysokiego napięcia. Po stronie zagrożonej wybuchem sygnały pomiarowe są przetwarzane za pomocą układu mikroprocesorowego, dzięki czemu zwiększono pewność działania zabezpieczeń. Informacje dotycząca upływności oraz ciągłości obwodu przekazywane są przez bariery iskrobezpieczne w postaci cyfrowej.
EN
In the paper two methods of MV cable isolation determination have been presented – one based on leakage control and one using a high voltage generator. In the hazard zone the relevant signals are processed with the use of microprocessor circuit which increases the reliability of protections operation. The information concerning the leakage and circuit continuity are transmitted through intrinsically safe barriers in digital form.
EN
This paper proposes an advanced signal-processing technique to improve the condition monitoring of rotating machinery. The proposed method employs the results of a blind spectrum interpretation including harmonic and sideband series detection. The contribution of this paper is an algorithm for automatic association of harmonic and sideband series with the characteristic fault frequencies listed in the kinematic configuration of the monitored system. The proposed algorithm is efficient in inspection of real-world signals, which contain a vast number of detected spectral components. The proposed approach has the advantage of taking into account a possible slip of the rolling-element bearings. The performance of the proposed algorithm is illustrated on real-world data by investigating a shaft problem of an industrial wind turbine high-speed shaft.
PL
W artykule zaproponowano zaawansowaną technikę przetwarzania sygnałów w celu poprawy monitorowania stanu maszyn wirujących. Przedstawiona metoda wykorzystuje wyniki ślepej interpretacji widma sygnału, m. in. detekcję serii harmonicznych i wstęg bocznych. Wkład zaprezentowany w tym artykule to algorytm do automatycznego łączenia serii harmonicznych oraz wstęg bocznych z charakterystycznymi częstotliwościami dostępnymi na podstawie konfiguracji kinematycznej monitorowanej maszyny. Zaproponowany algorytm jest skuteczny w badaniu sygnałów rzeczywistych, które zawierają dużą liczbę wykrytych elementów widmowych. Zaletą zaproponowanej metody jest uwzględnianie możliwego poślizgu łożyska tocznego. Działanie zaproponowanego algorytmu zostało zilustrowane na przykładzie rzeczywistych danych, który pokazuje problem wału wysokoobrotowego przemysłowej turbiny wiatrowej.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.