Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 71

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nanokrzemionka
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
PL
Celem pracy była ocena wpływu nanokrzemionki (NS) na wytrzymałość na ściskanie kompozytów o matrycy cementowej w różnych okresach dojrzewania. Analizowano kompozyty z dodatkiem NS w ilości 0,5 i 2,5% masy spoiwa, przy dwóch stosunkach wodno-spoiwowych (w/s = 0,45 i 0,55). Próby poddano badaniu wytrzymałości na ściskanie po 3, 7, 28, 90 i 180 dniach. Wyniki badań wykazały, że modyfikacja kompozytów cementowych nanokrzemionką prowadzi do wzrostu ich wytrzymałości na ściskanie w porównaniu do wzorcowych, niemodyfikowanych o takim samym stosunku wodno-spoiwowym. Najwyższą wytrzymałość na ściskanie po 28 dniach dojrzewania, wynoszącą 60 MPa uzyskano dla zaprawy zawierającej 2,5% nanokrzemionki przy stosunku w/s = 0,45, co stanowiło wzrost tej wytrzymałości w stosunku do zaprawy niemodyfikowanej o 40%. Otrzymane wyniki wskazują, że zastosowanie nanokrzemionki w ilości 2,5% w stosunku do masy spoiwa, w tego rodzaju kompozytach o matrycy cementowej, pozwala uzyskać znaczącą poprawę ich wytrzymałości na ściskanie. Szczególnie zauważalna poprawa była przy niższym stosunku wodno-spoiwowym.
EN
The aim of the study was to evaluate the impact of nanosilica (NS) on the compressive strength of cement matrix composites at different curing periods. Composites with NS additions of 0,5 and 2,5% of the binder mass were analyzed, with two water-to-binder ratios (w/b = 0,45 and 0,55). Compressive strength tests were conducted after 3, 7, 28, 90, and 180 days. The results showed that modifying cementitious composites with nanosilica leads to an increase in their compressive strength compared to reference, unmodified composites with the same water-to-binder ratio. The highest compressive strength after 28 days of curing, reaching 60 MPa, was obtained for the mortar containing 2,5% nanosilica at a w/b ratio of 0,45, representing a 40% increase in strength compared to the unmodified mortar. The obtained results indicate that using nanosilica at a dosage of 2,5% of the binder mass in such cement matrix composites allows for a significant improvement in their compressive strength. This improvement was particularly noticeable at a lower water--to-binder ratio.
PL
Nanotechnologia stanowi nową metodę podejścia do projektowania i wytwarzania komponentów o bardzo niewielkich rozmiarach, co pozwala na uzyskanie produktów o wyjątkowych właściwościach i funkcjach użytkowych. Wśród szeregu materiałów poddanych modyfikacji za pomocą nanotechnologii możemy również wyróżnić powszechnie znany i używany budulec, jakim jest cement. W niniejszej monografii omówiono szereg zagadnień związanych z wykorzystaniem nanotechnologii do sporządzania zaczynów cementowych stosowanych do uszczelniania otworów wiertniczych. Technologia sporządzania zaczynu cementowego w otworach wiertniczych przez ostatnie lata polegała często na wykorzystywaniu coraz to drobniejszych dodatków wypełniających pustki w matrycy cementowej. Do tego celu doskonale nadają się nanokomponenty, takie jak np. nano-SiO2 oraz nano-Al2O3, które powodują wyraźną poprawę parametrów płynnego i stwardniałego zaczynu cementowego. Redukują one odstój wody, czyli tzw. wolną wodę z zaczynów, oraz filtrację, co ma szczególnie znaczenie w przypadku cementowania otworów kierunkowych. Użycie nanododatków powoduje ponadto m.in. podwyższenie lepkości plastycznej oraz granicy płynięcia zaczynów cementowych, a także wyraźne skracanie czasu żelowania i wiązania receptur cementowych. W przypadku zaczynów z nano-SiO2 oraz nano-Al2O3 można zaobserwować wzrost (w porównaniu z zaczynami konwencjonalnymi) wartości wytrzymałości na ściskanie, wynikający ze szczelnego upakowania się w matrycy cementowej nanocząsteczek o bardzo małych ozmiarach. Mikrostruktura zaczynów z nanotlenkiem krzemu oraz glinu jest zwarta i cechuje się niewielką porowatością, o czym świadczą zamieszczone w monografii fotografie wykonane pod mikroskopem skaningowym oraz testy przeprowadzone na porozymetrze rtęciowym. Porowatości próbek zawierających nanododatki są znacznie niższe w porównaniu z porowatością zaczynów konwencjonalnych. Dzięki zastosowaniu zaczynów zawierających nanokomponenty zachodzi minimalne niebezpieczeństwo wytworzenia się kanalików dla przepływu mediów złożowych w płaszczu cementowym otworu wiertniczego. Wytrzymałości na ściskanie po 28 dniach hydratacji są wysokie (dla próbek z dodatkiem odpowiednio dobranych nanododatków dochodziły prawie do 40 MPa). Przyczepności do rur stalowych kamieni cementowych zawierających nanododatki również są wysokie (wynoszą często ok. 5–6 MPa). Ponadto zastosowanie innowacyjnej technologii w postaci nanorurek węglowych w zaczynach również wpływa pozytywnie na wzrost wytrzymałości mechanicznej oraz mikrostrukturę kamieni cementowych. Zmodyfikowane dodatkiem nanorurek kamienie cementowe charakteryzują się bardzo wysokimi wartościami wytrzymałości na ściskanie oraz wysokimi przyczepnościami do rur stalowych. Posiadają one zwartą mikrostrukturą o niskiej zawartości makroporów. Nanorurki mogą być z powodzeniem stosowane w zaczynach cementowych w szerokim zakresie temperatur (od 20°C do nawet do 150°C). Przedstawione w niniejszej monografii możliwości użycia zaczynów cementowych wzbogaconych nanokomponentami czy też nanorurkami węglowymi w istotny sposób poszerzają zakres dostępnych receptur, które można zastosować w celu optymalnego zacementowania otworów wiertniczych. Zaczyny z nanododatkami mogą w najbliższych latach znaleźć zastosowanie w przypadkach, w których konieczne będzie uzyskanie niezwykłej szczelności płaszcza cementowego w otworze wiertniczym.
EN
Nanotechnology is a new method of approaching the design and production of components of very small sizes, which allows for obtaining products with unique properties and functional functions. Among a number of materials modified using nanotechnology, we can also distinguish a commonly known and used building material, cement. This monograph discusses a number of issues related to the eradication of nanotechnology for the preparation of cement slurries used to seal boreholes. In recent years, the technology of preparing cement slurry in boreholes has often involved the use of increasingly finer additives to fill free spaces in the cement matrix. Nanocomponents are perfect for this purpose, such as nano-SiO2 and nano-Al2O3, which significantly improve the parameters of the liquid and hardened cement slurry. They reduce free fluid, i.e. the so-called free water from slurry and filtration, which is particularly important in the case of cementing directional boreholes. The use of nanoadditives also causes, among others, increasing the plastic viscosity and yield point of cement slurries as well as significantly shortening the gelling and setting time of cement slurries. In the case of nano-SiO2 and nano-Al2O3 slurries, an increase (compared to conventional slurries) in the value of compressive strength can be observed, resulting from the tight packing of very small nanoparticles in the cement matrix. The microstructure of slurries with nanosilicon and aluminum oxide is compact and characterized by low porosity, as evidenced by the photographs included in the monograph, taken under a scanning microscope and by tests performed on a mercury porosimeter. The porosities of samples containing nanoadditives are much lower compared to the porosities of conventional slurries. Thanks to the use of slurries containing nanocomponents, there is a minimal risk of creating channels for the flow of formation media in the cement sheath of the borehole. The compressive strengths after 28 days of hydration are high (for samples with the addition of appropriately selected nanoadditives, they reached almost 40 MPa). Adhesions to steel pipes of cement stones containing nanoadditives are also high (often approx. 5 – 6 MPa). Moreover, the use of innovative technology in the form of carbon nanotubes in slurries also has a positive effect on the increase in mechanical strength and microstructure of cement stones. Cement stones modified with the addition of nanotubes are characterized by very high compressive strength values and high adhesion to steel pipes. They have a compact microstructure with a low content of macropores. Nanotubes can be successfully used in cement slurries in a wide temperature range (from 20°C to even up to 150°C). The possibilities of using cement slurries enriched with nanocomponents or carbon nanotubes presented in this monograph significantly expand the range of available recipes that can be used for optimal cementing of boreholes. In the coming years, slurries with nano-additives may be used in cases where it is necessary to obtain extraordinary tightness of the cement sheath in a borehole.
EN
To compensate for the defects of silica fume (SF), which aggravates drying shrinkage, and increase the strength and durability of cement mortar, it was modified using 1 wt% nanosilica (NS) or calcium sulfate whisker (CSW) compounded with 2 wt% SF. The strength, volume stability, and durability of the cement mortar were characterized using the compressive strength, drying shrinkage, and capillary water absorption. The physical composition and microstructure of the samples are discussed in detail based on thermogravimetry, mercury intrusion porosimetry, and scanning electron microscopy measurements. The combination of SF and NS increased the generation of C–S–H gels and reduced the total porosity, thus increasing the early strength of the cement mortar and decreasing the capillary water absorption. Notably, on combining SF and CSW, additional calcium aluminate hydrates (AFts) were generated, and the mesoporosity (10–50 nm) was reduced. The fibrous AFt phase increased the later strength of the cement mortar, and the presence of additional AFt increased the solid phase volume, which compensated for the drying shrinkage.
EN
This study focuses on developing the production of ultra-high-performance lightweight concrete (UHPLC) by combining pumice with an air-entraining agent. Air-entraining agents of aluminum powder (AP) and lightcrete (LC) were added in amounts of 0.1, 0.2, 0.3, 0.4, and 0.5% by weight of cement to create air bubbles. Crushed pumice has also been used as a partial sand replacement in proportions of 25% and 50% by volume, with or without the addition of AP or LC. To investigate the fresh, mechanical, and microstructural properties, seventeen UHPLC combinations were constructed. A slump flow diameter test was conducted to evaluate the characteristics of fresh UHPLC, and mechanical properties were evaluated by completing dry density, compressive strength, tensile strength, flexural strength, modulus of elasticity, and dry shrinkage tests. The effect of high temperatures of 20, 400, 600, and 800 °C on compressive strength was also investigated. The microstructure characteristics were analyzed using a scanning electron microscope. The research concluded that high-performance concrete with a compressive strength of 127.6 MPa and a dry density of 1970 kg/m3 could be produced after a 28-day age test. This was accomplished by including 0.1% LC by weight of cement and 25% pumice as a partial substitute for sand. The mixture with 50% pumice as a partial replacement for sand and the addition of 0.5% LC of the cement weight exhibited the least loss in compressive strength when subjected to high temperatures.
PL
W artykule przedstawiono wyniki badań nad zastosowaniem poli-merów syntetycznych zbudowanych z merów winylowoamidowych, winylowosulfonowych, akrylowosulfonowych lub bezwodnika maleinowego do regulowania filtracji płuczek wiertniczych. Płuczki te zawierały w swoim składzie koloid ochronny typu skrobiowego, biopolimer, nanokrzemionkę hydrofobową dyspergowaną za pomocą sonifikatora w wodnym roztworze środków powierzchniowo czynnych oraz jonowy inhibitor hydratacji skał (KCl) i blokator węglanowy celem wytworzenia osadu filtracyjnego. Na podstawie przeprowadzonych badań z wykorzystaniem nowych środków syntetycznych dokonano ich doboru do regulowania filtracji oraz parametrów reologicznych płuczek wiertniczych w różnych warunkach geologicznych. Badania przeprowadzono dla płuczek o różnym stopniu zmineralizowania, przy różnej zawartości fazy stałej. Wykonano również badania właściwości smarnych i inhibicyjnych płuczek. Na podstawie uzyskanych wyników zaproponowano składy płuczek charakteryzujące się niską filtracją w warunkach HPHT. Przeprowadzono pomiary statycznej filtracji HPHT na standardowych sączkach do pomiaru filtracji oraz w temperaturach 60°C i 120°C. Filtrację przy użyciu aparatu Grace M2200 HPHT wykonano na rdzeniach o porowatości 20 µm. W celu odtworzenia warunków otworowych do płuczek dodawano zwierciny (zmielony łupek mioceński) i skażenia chemiczne w postaci chlorków wapnia i magnezu. Wyniki pomiarów na aparacie Grace M2200 HPHT podane w artykule zostały przeliczone na podstawie stosunku po- wierzchni filtracji w celu porównania ze statyczną filtracją HPHT. Uzyskane wyniki badań mogą znaleźć zastosowanie w warunkach przemysłowych podczas głębokich wierceń oraz pozyskiwania energii geotermalnej.
EN
The article presents the results of research on the use of synthetic polymers made of vinylamide, vinylsulfonic, acryl-sulfonic or maleic anhydride to regulate the filtration of drilling fluids. These muds contained a starch-type colloid, a biopolymer, hydrophobic nanosilica dispersed using a sonificator in an aqueous solution of surfactants, as well as an ionic rock hydration inhibitor (KCl) and a carbonate blocker to produce a filter cake. Based on the research carried out with the use of new synthetic agents, their selection was made for regulating the filtration and rheological parameters of drilling fluids under various geological conditions. The tests were carried out for muds of various mineralization levels, with different solids content. The lubricating and inhibitory properties of the muds were also tested. On the basis of the obtained results, the drilling fluids compositions with low HPHT filtration were proposed. Static HPHT filtration measurements were performed on standard filters for filtration measurement and at a temperature of 60 and 120°C. Filtration using a Grace M2200 HPHT apparatus was performed on cores with a porosity of 20 µm. In order to restore the borehole conditions, drill cuttings (ground Miocene shale) and chemical contamination in the form of calcium and magnesium chlorides were added to the muds. The results of the measurements made using the Grace M2200 HPHT apparatus given in the article were converted from the filtration area ratio for comparison with the static HPHT filtration. The obtained research results can be used in industrial conditions during deep drilling and the acquisition of geothermal energy.
EN
Due to the increasing necessity of building on soils with insufficient bearing capacity, the development of methods for soil improvement is an important geotechnical engineering issue. One of the innovative methods of soil stabilisation is the use of nano-additives. The paper presents the influence of nanosilica on the bearing capacity under the footing under undrained conditions. For this purpose, a simple and quick unconfined compression test was used to evaluate the undrained shear strength of selected silty soil. Tests were conducted for soil without additives and with nanosilica contents of 1, 3 and 5%. All samples were compacted to the maximum dry density in a Proctor apparatus, and strength tests were conducted after 7 days of curing. The results clearly show an increase in undrained shear strength with increasing nanosilica content. Based on these data, a parametric analysis of the bearing capacity under the strip footing was performed for 4 variants of nanosilica content and for 9 loading cases. Thus, the impact of stabilisation in a practical engineering issue was presented. For all load cases the optimal dimensions of the foundation were determined. In addition, for the selected case, calculations were made for a fixed foundation dimension. All computations were performed in accordance with Eurocode 7 with GEO5 software.
PL
Ze względu na coraz powszechniejszą konieczność posadowienia obiektów na gruntach o niewystarczającej nośności, rozwój metod ulepszania i stabilizacji podłoża gruntowego jest aktualnym wyzwaniem inżynierii geotechnicznej. Jedną z innowacyjnych metod stabilizacji gruntu jest wykorzystanie nanododatków jako materiału stabilizującego. Zaletami tego rozwiązania są mniejsza ilość dodatku wymagana do uzyskania określonej poprawy właściwości mechanicznych gruntu względem tradycyjnych metod oraz mniejszy negatywny wpływ na środowisko. W kontekście ulepszenia podłoża gruntowego nanododatkami wybór nanokrzemionki (nano SiO2) stanowi optymalne rozwiązanie z punktu widzenia skuteczności i kosztów. W pracy przedstawiono wpływ zawartości nanokrzemionki na nośność podłoża pod ławą fundamentową w warunkach bez odpływu. W praktyce warunki te występują przede wszystkim w sytuacjach przejściowych, gdy następuje szybki przyrost obciążeń. W pierwszej kolejności wykonano badania laboratoryjne mające na celu określenie parametrów wytrzymałości wybranego gruntu bez dodatku oraz stabilizowanego nanokrzemionką. W tym celu wykorzystano prosty i szybki test jednoosiowego ściskania pozwalający na ocenę wytrzymałości gruntu w warunkach bez odpływu. Badania laboratoryjne wykonano dla wybranego gruntu pylastego. Testy przeprowadzono dla czystego materiału gruntowego oraz z dodatkiem nanokrzemionki 1, 3 i 5%. Wszystkie próbki zostały zagęszczone do maksymalnej gęstości objętościowej szkieletu gruntowego w aparacie Proctora a testy wytrzymałościowe przeprowadzono po 7 dniach dojrzewania próbek. Badania wykazały średni wzrost wytrzymałości na ścinanie bez odpływu Cu odpowiednio o 18.1%, 54.9% i 76.0% w porównaniu do gruntu bez dodatku. Zaobserwowano również znaczny wzrost modułu siecznego Eu50 tj. odpowiednio 29.7%, 111.0% i 120.1%. W przypadku wytrzymałości stwierdzono liniową zależność wytrzymałości od zawartości nanokrzemionki. Dla sztywności ta zależność była inna, jednak ze względu na duży rozrzut wyników nie można było sformułować jednoznacznych wniosków. Otrzymane dane znacznie odbiegają od tych prezentowanych w literaturze dla podobnych typów gruntów i zawartości nanokrzemionki, co prawdopodobnie spowodowane jest innymi czynnikami wpływającymi na wyniki badań.
EN
This study provides a comparative analysis of natural nanosilica (NSn), which is an extract of natural silica sand processed into nanosilica with commercial nanosilica (NSc) derived from semiconductor industrial waste, in 80 MPa high performance concrete (HPC). The percentage of using nanosilica is (3%, 5%, 10%, 15%) by weight of cement used directly and combined with 5% silica fume. Analysis was carried out through compressive strength test, durability through permeability test, rapid chloride penetration test (RCPT), and microstructure test through scanning electron microscopy (SEM). The results of the analysis show that natural nanosilica is equivalent to commercial nanosilica, in applications it is better to use silica fume incorporation. The optimum percentage of using NSn10% and (SF) 5%, while 5% NSc and 5% SF, in these proportions shows the best compressive strength and durability. It’s just that the use of natural nanosilika is 5% more than commercial nanosilika. The benefit of this research is that natural materials such as silica sand with high SiO2 content, can be processed into nanosilica as an advanced material, which can be used as an eco-friendly construction material.
EN
In this study, the effect of colloidal nano-silica replacing a fraction of cement and recycled concrete fine aggregate replacing natural sand on the post-fire mechanical features and durability of concrete was explored. To achieve this goal, 189 concrete samples were manufactured in total, with key variables being the volume of fine aggregate at 0,50, and 100% replacing natural fine aggregate, the volume of nano-silica at 1.5, 3, 4.5, and 6% replacing the cement weight, and the exposure temperature at 20, 300, and 600oC. Parameters selected for consideration in the concretes consisted of compressive capacity, splitting tensile capacity, elastic modulus, ultrasonic pulse velocity (UPV), and weight loss. Furthermore, using scanning electron microscopy (SEM) imaging, the microstructural condition of different sample groups was investigated. According to the findings, as the content of the recycled fine aggregate (RFA) replacing natural fine aggregate increased, the compressive capacity of the unheated and heated concretes declined, and the rate of this drop became greater as the replacement volume increased. On the other hand, the presence of the nano-silica and an increase in its content replacing the cement content in recycled aggregate concrete improved the compressive strength relative to the reference concrete for all the exposure temperatures, with the greatest improvement for the replacement percentage of 4.5%. In addition, the heat-induced compressive capacity drop was more pronounced at higher replacement levels of nano-silica. With a rise in the exposure temperature of the samples with only the recycled fine aggregate, fewer microcracks formed compared with the samples containing both recycled fine aggregate and nano-silica. The maximum weight loss occurred in the recycled sample containing the highest contents of nano-silica and recycled aggregate. Afterward, it was attempted to estimate the mechanical features of concrete by developing several empirical formulas as a function of temperature and volume fractions of recycled fine aggregate and nano-silica. These formulas were evaluated against the test data of this study and others, which showed an acceptable correlation. Finally, the findings of the tests were evaluated against the predictions of ACI 216, EN 1994-1-2, EN 1992-1-2, and ASCE.
EN
The demand for cement-free concrete is increasing worldwide to make the construction industry closer to being sustainable. The current research’s main objective was to develop self-compacting fiber-reinforced geopolymer concrete using waste/recycled materials. Steel wire from an old discarded tire was cut to make steel fibers. Wheat straw ash, an agricultural waste material, was utilized as the primary binder, and alkali-activated solutions were used as the precursors. Further, nano-silica (NS) was added from 0.5 to 3.0%, and waste tire steel fibers (WTSF) were added from 1 to 3.5% by binder content in different mixes. To evaluate the characteristics of different concrete, tests were performed, such as compressive, split tensile, and flexural strength for mechanical properties and sorptivity, rapid chloride penetration (RCP), and drying shrinkage tests for durability properties. It was noted that at 2.5% NS and 3.0% WTSF, the strength increases as 71.5, 6.5, and 8.2 MPa strength was achieved at 90 days for compressive, split tensile and flexural strength. For the RCP test, all samples were categorized as “low” in electrical conductance, micro-strains for drying shrinkage all came in an acceptable range for all samples, and sorptivity values were higher in earlier curing phases than in later phases of concrete. To understand the phase analysis of concrete, x-ray diffraction (XRD) analysis was performed, and it was revealed that the M5 mix (2.5% NS + 3.0% WTSF) had the highest peaks of C-S-H, N-A-S-H, and C-A-S-H, which demonstrates the densified microstructure of concrete with addition of nano-silica.
EN
This study investigates the effects of Nano SiO2 (NS) and Silica fume (SF) on the mechanical properties and durability of Portland cement concrete. On specimens with varying NS and SF concentrations, compressive strength, flexural strength, abrasion resistance, elastic modulus, and chloride ion penetration were all tested. All specimens were subjected to the proposed method/technique cured at the ages of 3, 7, 28, and 60 days. NS particles were added to cement concrete at various replacements of 0, 0.5, 1.0, 1.5, and 2.0% by the mass of the binder. The water/binder ratio has remained at 0.37 for all mixes. Then, for cement-concrete were prepared 45 MPa (C45) with NS and SF. The specimens confirm the new method effectiveness evaluation were prepared under two different categories: (1) Portland cement replacement with NS of 0%, 0.5%, 1.0%, 1.5%, and 2.0%, by weight for adhesives; (2) Portland cement replacement with NS of 0.5%, 1.0% and each NS content in combination with SF of 5%, 10%, and 15%, respectively, by weight for adhesives. The results indicated that the abrasion resistance and Chloride ion penetration of concrete containing NS and SF are improved. Finally, an analytical model for forecasting the Elastic modulus, flexural strength, and compressive strength of cement concrete was established from obtained data.
EN
Currently, nanoparticles are used as admixtures to reduce the thermal deterioration of concrete after exposure to fire. How-ever, the influence of high temperature on high-strength concrete (HSC) containing silica fume and nanoparticles has not been investigated well. In this study, various HSC mixes incorporated with 1%, 2%, 3% and 4% nanosilica (NS) or 1% and 2% nanoferrite (NF) were prepared to produce HSC with high enduring strength after being subjected to high temperatures of up to 800 °C and actual fires. The specimens were assessed via scanning electron microscopy, compression and splitting tensile tests, modulus of elasticity test, and water permeability coefficient analysis. Results showed that using NS and NF percentages of up to 3% and 2%, respectively, in HSC improved the mechanical properties and water permeability coefficient at elevated temperatures. The compressive strength of the heated specimens with 3% NS was better than those with 2% NF at temperatures 200°C 800°C. With regard to the microstructure feature, the results confirmed that NS acted as an adequate filling material, which produced a condensed microstructure with extra compressed hydration outputs. This may be associated to higher pozzolanic reaction of NS with high distribution that formed additional calcium silicate hydrate gel. The specimens with 3% NS had no cracks until the temperature of 800°C, but their porosity increased slightly.
EN
The fabrication of polymer-based nanocomposites by means of twin extruders is a typical method for manufacturing lightweight and high-strength structures. However, selection of the optimal parameters for this process to study the material characteristics is important. The primary aim of the present study was to ascertain the optimum extruder temperature and nanosilica content in an acrylonitrile-butadiene-styrene matrix composite. The response surface methodology was based on two factors and three levels. The identification of the effect of the parameters on the fatigue behavior of the fabricated composite was comprehensively analyzed. The results were analyzed using scanning electron microscopy (SEM). The obtained results revealed that up to 4% nano-SiO2 improves tensile strength and reduces the impact toughness. On the other hand, an increase in the extrusion temperature yields a higher impact toughness and lower tensile strength. The optimization results showed that 2.5% nanosilica and the extrusion temperature of 225°C result in the maximum tensile strength of 41 MPa, and impact toughness of 30 KJ/m2.
PL
Materiały z cementu modyfikowanego kopolimerem styren-butadien [KSB] są szeroko stosowane, ale dodatek KSB może opóźnić wiązanie i twardnienie cementu, co ogranicza jego zastosowanie w niektórych przypadkach. W niniejszej pracy wybrano nanokrzemionkę jako składnik modyfikujący w celu omówienia jej wpływu na wczesną hydratację, wiązanie i twardnienie kompozytowego materiału cementowego KSB/cement. Mierząc czas wiązania i wytrzymałość wczesną kompozytowego materiału cementowego KSB/cement modyfikowanego nanokrzemionką, przeanalizowano wpływ nanokrzemionki na proces wiązania i twardnienia kompozytowego materiału cementowego. Ciepło hydratacji kompozytowego materiału cementowego KSB/cement modyfikowanego nanokrzemionką wyznaczono metodą kalorymetrii izotermicznej. Produkty hydratacji zbadano metodą dyfrakcji rentgenowskiej, co pozwoliło na analizę wpływu nanokrzemionki na wczesny proces hydratacji kompozytowego materiału cementowego. Wyniki badań wykazują, że dodatek nanokrzemionki może przyspieszać proces wiązania i twardnienia kompozytowego materiału cementowego, a im większa jest jej dawka, tym efekt ten jest wyraźniejszy. Dodatek nanokrzemionki przyspiesza tworzenie się ettringitu i wodorotlenku wapnia poprzez wpływ na hydratację glinianu trójwapniowego i krzemianu trójwapniowego – skraca okres indukcji i czas trwania głównego efektu termicznego, to jest przyspiesza proces hydratacji, a tym samym skraca czas wiązania i zwiększa wytrzymałość wczesną.
EN
Styrene-butadiene copolymer [SB] modified cement-based materials are widely used, but the addition of SB can delay the setting and hardening of cement, which limits its application in some projects. In this paper, nanosilica was selected as the modifying component to study its influence on the early hydration, setting and hardening of SB/cement composite material. By measuring the setting time and early strength of nanosilica modified SB/cement composite material, the influence of nanosilica on the setting and hardening process of composite cementitious material was analyzed. The hydration heat of nanosilica modified SB/cement composite material was determined by isothermal calorimetry, and its hydration products were examined by X-ray diffraction, so as to analyze the influence of nanosilica on the early hydration process of composite cementitious material. The results show that the addition of nanosilica can effectively promote the setting and hardening process of composite cementitious material, and the higher the dosage is, the more significant the effect is. It also indicates that addition of nanosilica accelerates the formation of ettringite and calcium hydroxide, by promoting the hydration of tricalcium aluminate and tricalcium silicate. Shortens the hydration induction period and acceleration period of the composite cementitious material and accelerates the hydration process, thereby shortening the setting time and increasing the early strength.
PL
W artykule opisano wyniki badań dwóch betonów ciężkich, pierwszy zawierający kruszywo hematytowe i drugi magnetytowe. Węglik boru wprowadzono jako zamiennik cementu w ilościach 2,5; 5 i 10% masowych. Następnie w tych mieszankach ilość cementu zmniejszono o 5% i zastąpiono nanokrzemionką. Zbadano także właściwości betonu: wytrzymałość na ściskanie, szybkość przejścia fali ultradźwiękowej i gęstość, a także napromieniowano próbki kobaltem 60, w celu określenia współczynnika tłumienia liniowego. Zastosowanie kruszyw zawierających tlenek żelaza, a zwłaszcza magnetyt, było korzystne dla wszystkich wymienionych właściwości, natomiast odwrotnie było w przypadku dodania do mieszanki węglika boru. Dodatek nanokrzemionki skompensował spadek wytrzymałości betonu na ściskanie spowodowany dodatkiem węglika boru, ale zmniejszył współczynnik tłumienia liniowego o około 4%. Jednak właściwości mieszanek zawierających węglik boru i nanokrzemionkę były zawsze lepsze niż w przypadku betonów zwykłych. W celu określenia współczynnika tłumienia liniowego przeprowadzono symulacje Monte Carlo, których wyniki okazały się zgodne z wynikami uzyskanymi w trakcie badań doświadczalnych.
EN
Two families of heavy concrete were investigated in this project, the first containing hematite and the second magnetite aggregates. Boron carbide also replaced cement in mass of 2.5, 5 and 10%. Once again, in these compounds the content of cement was reduced by 5% and replaced by nanosilica. Such parameters as compressive strength, ultrasonic pulse velocity and density were investigated, and the specimens were irradiated with cobalt 60, to quantify the linear attenuation coefficient. Using iron ore aggregate, especially magnetite, was advantageous for all the above-mentioned parameters, while the opposite was true, when boron carbide was added to the mix. The addition of nanosilica compensated the decrease in compressive strength of concrete due to the presence of boron carbide, but reduced the linear attenuation coefficient by about 4%. However, the properties of the mixes containing boron carbide and nanosilica, were always better than those of conventional concretes. To quantify the linear attenuation coefficient, Monte Carlo simulations were performed, and their results turned out to be in good agreement with those obtained by the experimental measurements.
15
Content available remote Antibacterial Fibers Containing Nanosilica with Immobilized Silver Nanoparticles
EN
The main aim of the presented research was to obtain antibacterial fibers containing nanosilica with immobilized silver nanoparticles. The nanomodifier in an amount of 250 ppm, 500 ppm, 1,000 ppm, and 2,000 ppm were introduced into the cellulose fiber matrix during the cellulose dissolution process. In order to assess the influence of the nanomodifier's amount in the fiber on the antibacterial activity of modified fiber, a quantitative test of the antibacterial activity of the fibers was performed. The basic parameters of modified fibers, such as the mechanical and hygroscopic, were estimated. The size and shape of the nanomodifier in the selected fibers, as well as microanalysis of the polymer matrix, were examined. The investigations were conducted by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectrometry (EDS). The obtained results allowed the selection of optimal fibers with strong antibacterial properties that can be potentially used for personal protection or medical purposes.
EN
This article presents test results of cement paste and binders with admixture of hydrophilic or hydrophobic nanosilica. The aim of the study was to determine the influence of nanosilica type and mixing method on compressive strength, porosity, and bulk density of cement paste, also on hydration heat of cement binders. The binder compounds were mixed in high speed mixer in order to provide the highest possible dispersion of nanoparticles in the binder before adding it to mixing water. Two mixing methods were studied. The admixtures increased the reactivity of cement binders. Both nanosilica types increased early compressive strength by 25% in comparison with control series. The increase in 28-day compressive strength was observed with the admixture of hydrophilic nanosilica. The differences in dynamics of binders rate of hydration and development of cement pastes compressive strength denote different reaction mechanisms of both types of nanosilica. Application of higher rotation speeds does not guarantee satisfactory mixing of the binder components. For compressive strength enhancement of cement paste prolonged mixing time occurred to be more important.
PL
Osiągnięcia nanotechnologii znalazły zastosowanie w szeregu gałęzi przemysłu. Wraz z rozwojem instrumentów naukowych stają się one również możliwe do wdrożenia w branży budowalnej, a zastosowanie nanodrobin w formie domieszek do betonu jest przykładem tego typu prób. W tym kontekście duże zainteresowanie wzbudza nanokrzemionka. Jest to materiał składający się z nanodrobin amorficznej krzemionki o dużej powierzchni właściwej i dużej czystości chemicznej. Dzięki intensywnej reakcji pucolanowej oraz zarodkowaniu reakcji hydratacji cementu sprzyja wytworzeniu zwartej struktury matrycy cementowej, co może przełożyć się na bardzo dobre parametry mechaniczne i wydłużoną trwałość kompozytu cementowego. Problemem przy stosowaniu nanodomieszek jest zapewnienie ich jednorodnego rozprowadzenia w mieszance i stwardniałym kompozycie. W celu znalezienia satysfakcjonującego rozwiązania tego problemu badane są różne rodzaje nanokrzemionki oraz różne procedury jej mieszania ze składnikami mieszanki. W artykule przedstawiono wyniki badań zaczynów i spoiw cementowych z domieszką nanokrzemionek hydrofilowej i hydrofobowej. Celem badań była ocena wpływu rodzaju nanokrzemionki oraz sposobu mieszania składników na rozwój wytrzymałości na ściskanie, porowatość kapilarną i gęstość zaczynów oraz rozwój ciepła hydratacji spoiw cementowych. Zawartość domieszek w spoiwach wynosiła 0%, 1% lub 2% masy spoiwa. Składniki spoiw cementowych zostały wymieszane w mieszarce wysokoobrotowej w celu zapewnienia możliwie jednorodnego rozprowadzenia nanodomieszek w spoiwie przed dodaniem spoiwa do wody zarobowej. Wykonano 10 serii spoiw: 5 spoiw wymieszanych I metodą mieszania (wykorzystującą dwie prędkości obrotowe mieszarki) oraz identycznych składów 5 spoiw wymieszanych II metodą mieszania (wykorzystującą jedną niższą prędkość urządzenia, ale z dłuższym etapem mieszania).
EN
The mechanical properties of cement paste modified by nano-TiO2 (nT) and nano-SiO2 (nS) were experimentally studied. The compressive strength increased first and then decreased with the increase of nanoparticle content. When nanoparticles were added into the cement paste as a filler to improve the microstructure, the two kinds of particles both could form a tighter mesh structure, which would enhance the density and strength of the structure. The elastic modulus increased rapidly with the increase of the nT content and reached a peak when the nanoparticle content is about 3%, which was about twice the elastic modulus of ordinary cement paste. The Scanning electron microscopy (SEM) observation results showed that the microstructure of cement was network connection and fiber tube. The hydration progress of ordinary cement slurry was insufficient, and many unreacted cement particles remained. With the addition of nanoparticles, the internal structure of the cement became denser, with fewer pore cracks, smaller pore diameters, more complex fiber tube arrangements, and significant anisotropy, thereby improving strength and mechanical properties.
EN
Nanosilica as a commercial product dedicated to construction remains a relatively expensive chemical admixture for concrete and cement mortars. Economic considerations are a major barrier to the industrial use of nanosilica in the building materials industry. With respect to nanosilica, the following have been confirmed: accelerating the effect of C3S hydration, accelerated C-S-H gel formation, modification of the mixture viscosity, improvement of cement matrix tightness, also at high temperature. The efficiency of nanosilica depends on its even distribution in the composite, therefore disagglomeration is necessary for the proper design of mortar or concrete. The article presents the results of tests on cement mortars modified with different amounts of colloidal nanosilica. It is an nano-SiO2 admixture in the form of an aqueous dispersion containing up to 50% pure nanosilica, which is produced on an industrial scale as an admixture for concrete and cement mortars. Dispersions of nanosilica in composite using ultrasound were used. The possibilities of using nanosilica as an admixture improving the early strength of cement composites were pointed out.
PL
Nanokrzemionka jako produkt komercyjny dedykowany dla budownictwa pozostaje nadal stosunkowo drogą domieszką chemiczną do betonów i zapraw cementowych. Względy ekonomiczne są główną barierą w przemysłowym zastosowaniu nanokrzemionki w przemyśle materiałów budowlanych. W odniesieniu do nanokrzemionki potwierdzono: przyspieszające działanie na hydratację C3S, przyspieszone tworzenia się żelu C-S-H, modyfikację lepkości mieszanki, poprawę szczelności matrycy cementowej, także w warunkach wysokiej temperatury. Wydajność nanokrzemionki zależy od jej równomiernego rozmieszczenia w kompozycie, dlatego dezaglomeracja jest niezbędna do prawidłowego zaprojektowania zaprawy lub betonu. W artykule przedstawiono wyniki badań zapraw cementowych modyfikowanych różną ilością nanokrzemionki koloidalnej. Jest to domieszka nano-SiO2 w postaci wodnej dyspersji zawierającej do 50% czystej nanokrzemionki, która produkowana jest na skalę przemysłową jako domieszka do betonów i zapraw cementowych. W badaniach zastosowano dyspersję nanokrzemionki w kompozycie z wykorzystaniem ultradźwięków. Wskazano na możliwości zastosowania nanokrzemionki jako domieszki poprawiającej wczesną wytrzymałość kompozytów cementowych.
PL
Tak jak w każdej dziedzinie nauki, tak również w wiertnictwie konieczne jest stałe dążenie do tworzenia nowych, zmodernizowanych produktów. Dlatego też zarówno na świecie, jak i w Polsce trwają nieprzerwanie badania mające na celu uzyskanie trwalszych, szczelniejszych czy też bardziej ekologicznych materiałów wiążących. Coraz częściej poszukiwane są innowacyjne rozwiązania, które pozwolą na otrzymywanie jak najwyższej klasy produktów wiążących. Ostatnio synonimem rozwoju i postępu stała się nanotechnologia – dynamicznie rozwijający się dział nauki zajmujący się zarówno projektowaniem, tworzeniem, jak i badaniem struktur o wielkości rzędu nanometrów (miliardowych części metra). Kamień cementowy utworzony jest m.in. z małych ziaren uwodnionych krzemianów wapnia i dużych kryształków uwodnionych produktów hydratacji, między którymi znajdują się przestrzenie porowe. Jest to miejsce, w którym mogą się z powodzeniem upakować drobne ziarenka nanocząsteczek, powodując zmniejszenie porowatości i przepuszczalności matrycy cementowej. W artykule zamieszczono wyniki badań przykładowych receptur zaczynów cementowych (zawierających od 0,5% do 1% nanokrzemionki) przeznaczonych do uszczelniania kolumn rur okładzinowych w otworach wiertniczych o głębokości końcowej około 1000–2000 metrów. Receptury zaczynów opracowano w INiG – PIB. Zaczyny posiadały gęstość około 1870 kg/m3 , a ich czasy gęstnienia dobrano odpowiednio do danych warunków geologiczno-technicznych. Próbki kamieni cementowych uzyskane z zaczynów z nanokomponentami cechowały się bardzo niską (jedynie około 2%) zawartością porów kapilarnych. Pory o najmniejszych rozmiarach (poniżej 100 nm) stanowiły zdecydowaną większość (powyżej 95%) ogólnej ilości porów występujących w matrycy cementowej, co świadczy o bardzo niskiej przepuszczalności dla medium złożowego. Wczesne wytrzymałości na ściskanie wynoszące 3,5 MPa (na podstawie badania na ultrasonograficznym analizatorze cementu) zaczyny uzyskiwały po czasach od około 7½ godziny do 14 godzin. Po tym okresie kamień cementowy jest na tyle mocny, że możliwe jest dalsze prowadzenie prac w otworze. Wytrzymałości na ściskanie kamieni cementowych po 28 dniach hydratacji przyjmowały bardzo wysokie wartości, dochodzące nawet do 38 MPa (wytrzymałości te znacznie przekraczały wyniki uzyskiwane dla zaczynów konwencjonalnych). Przyczepność do rur stalowych po 28 dniach hydratacji była bardzo wysoka i wyniosła około 6 MPa. Potwierdzeniem niezwykle zwartej mikrostruktury próbek z nano-SiO2 mogą być fotografie próbek zaczynów wykonane za pomocą mikroskopii skaningowej. Widać na nich zbitą matrycę cementową o bardzo małej przepuszczalności.
EN
As in every field of science, drilling also requires a constant effort to develop new, modernized products. Both in the world and in Poland research is therefore continually under way to obtain more durable, tighter or more ecological binding materials. Innovative solutions are increasingly being sought to produce the highest quality binding materials possible. Recently, nanotechnology has become a synonym for devel- opment and progress – a dynamically developing branch of science, dealing with both designing, creating and testing nanometer-scale (billionths of a meter) structures. Cement stone is formed, among others, from small grains of hydrated calcium silicates and large crystals of hydrated hydration products between which there are pore spaces. It is a place where fine grains of nanoparticles can be successfully packed, causing a decrease in the porosity and permeability of the cement matrix. The article presents the results of testing cement slurries (containing from 0.5% do 1% of nanosilica) for sealing the casing columns in boreholes with a final depth of about 1000–2000 meters. Laboratory tests of cement slurries were carried out at Oil and Gas Institute – NRI, developing groups of cement slurry recipes with a density of approximately 1870 kg/m3 . Cement slurries had thickening times properly matched to given geological and technical conditions. Pore distribution of cement stone samples with nanoparticles were characterized by a small number of capillary pores (about 2%). Pores of the smallest sizes (below 100 nm), made up a vast majority (over 95%) of the total pores in the cement matrix, which prove their low permeability for reservoir fluids. The early compressive strengths of 3.5 MPa (based on an Ultrasonic Cement Analyzer) where obtained after about 7½ to 14 hours. After this period, the cement stone is strong enough to continue work in the borehole. Compressive strength after 28 days of hydration was very high, reaching even 38 MPa (these strengths were much higher than those obtained for conventional slurries). Adhesion to steel pipes after 28 days of hydration was very high and amounted to about 6 MPa. The extremely compact microstructure of the samples with nano-SiO2 is confirmed by scanning electron microscope images of cement samples. They show a compact cement matrix with very low permeability.
PL
W Chinach buduje się dużą ilość wież betonowych na liniach do przesyłu bardzo wysokich napięć, z których wiele przecina zamarzające płaskowyże, a betonowy fundament wieży energetycznej narażony jest na zamarzanie i rozmrażanie, co zmniejsza jego wytrzymałość. W pracy badano zaprawy wykonane z cementu, popiołu lotnego i nanokrzemionki, które dojrzewały w roztworze siarczanów i chlorków przez 90 dni. Badano wytrzymałość, odporność na mróz, strukturę porów, strefę przejściową oraz wpływ dodatku nanokrzemionki na te właściwości. Wyniki badań pokazały, że dodatek nanokrzemionki poprawia odporność na mróz, a ten efekt można wyjaśnić poprawą struktury porów i zmniejszeniem porowatości strefy przejściowej z kruszywem. Przechowywanie betonu w roztworze agresywnym siarczanowo-chlorkowym ma niekorzystny wpływ na odporność na mróz, a powstawanie Aft, powodujące ekspansje może powodować powstawanie spękań betonu. Te wyniki uzasadniają ograniczenie wykonywania fundamentów betonowych wież do okresu letniego na zamarzających płaskowyżach, co zapewni ich lepsze właściwości.
EN
In China, a large amount of electric transmission towers has been built across plateau frozen soil, where the foundation concrete serves under freeze-thaw and erosion condition, and consequently, the durability faces the tough challenges. In this study, the mortars were prepared based on cement, fly ash, and nano silica [NS], which were cured in chloride-sulfate solution for 90 days. The compressive strength, freeze-thaw resistance, pore structure, interfacial transition zone, and hydration products was investigated, and the improvement in freeze-thaw resistance by addition of NS was discussed. The results show that addition of NS can improve the freeze-thaw resistance, and increase in curing temperature can also show improvement in freeze-thaw resistance. This effect can be explained by refine the pore structure and densify the microstructure of ITZ with the addition of NS. Furthermore, negative effect on freeze-thaw resistance can be found that being cured under chloride-sulfate condition, the formation of AFt would cause the volume expansion and cracking of concrete. Such results suggest that in the plateau frozen soil, it is better to cast concrete in summer, which would benefit the strength development of concrete and promote the freeze-thaw resistance.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.