Chitosan (CS) is a polysaccharide readily used in tissue engineering due to its properties: similarity to the glycosaminoglycans present in the body, biocompatibility, non-toxicity, antibacterial character and owing to the fact that its degradation that may occur under the influence of human enzymes generates non-toxic products. Applications in tissue engineering include using CS to produce artificial scaffolds for bone regeneration that provide an attachment site for cells during regeneration processes. Chitosan can be used to prepare scaffolds exclusively from this polysaccharide, composites or polyelectrolyte complexes. A popular solution for improving the surface properties and, as a result enhancing cell-biomaterial interactions, is to coat the scaffold with layers of chitosan. The article focuses on a polysaccharide of natural origin – chitosan (CS) and its application in scaffolds in tissue engineering. The last part of the review focuses on bone tissue and interactions between cells and chitosan after implantation of a scaffold and how chitosan’s structure affects bone cell adhesion and life processes.
Tissue engineering is a branch of science that focuses on methods and techniques for the creation of new tissues and organs for the therapeutic reconstruction of the damaged organ by providing support structures, cells, molecular and mechanical signals for regeneration to the desired region. Conventional implants made of inert materials can eliminate only physical and mechanical defects of damaged tissues. The goal of tissue engineering is to restore biological functions, that is regeneration of tissues, and not only to replace it with a substitute made of synthetic material. The most important challenges of tissue engineering include the development of new biomaterials that will be used as three-dimensional scaffolds for cell cultures. Such scaffolding must be characterized by biocompatibility and biodegradability. The aim of the research was to obtain biomaterials based on acylated chitosan. The result of the work was to obtain three-dimensional scaffolding with bioactive properties based on raw materials of natural origin. The biomaterials were modified with ferrimagnetic nanoparticles which are capable of electromagnetic stimulation of proliferation.
PL
Inżynieria tkankowa jest dziedziną nauki, która koncentruje się na metodach i technikach tworzenia nowych tkanek i narządów do terapeutycznej rekonstrukcji uszkodzonego narządu poprzez dostarczanie struktur wspierających, komórek, sygnałów molekularnych i mechanicznych do regeneracji w pożądanym kierunku. Konwencjonalne implanty wykonane z materiałów obojętnych mogą wyeliminować fizyczne i mechaniczne wady uszkodzonych tkanek. Celem inżynierii tkankowej jest przywrócenie funkcji biologicznych, czyli regeneracja tkanek, a nie tylko zastąpienie jej substytutem wykonanym z materiału syntetycznego. Najważniejsze wyzwania inżynierii tkankowej obejmują rozwój nowych biomateriałów, które będą wykorzystywane jako trójwymiarowe rusztowania do hodowli komórkowych. Takie rusztowanie musi charakteryzować się biokompatybilnością i biodegradowalnością. Celem badań było uzyskanie biomateriałów na bazie acylowanego chitozanu. Rezultatem prac było uzyskanie trójwymiarowego rusztowania o właściwościach bioaktywnych na bazie surowców pochodzenia naturalnego. Biomateriały zmodyfikowano nanocząstkami ferrimagnetycznymi, które są zdolne do elektromagnetycznej stymulacji proliferacji.
The study aimed to produce nano- and microfibrous materials from polyurethane (ChronoFlex®C75A/ C75D in 1,1,1,3,3,3–hexafluoro–2–propanol) by solution blow spinning. Experiments were carried out in order to determine the impact of solution blow spinning parameters on fibre diameter and quality of produced materials. The following properties of produced fibre scaffolds were investigated: fibre size, porosity and pore size, wettability, and mechanical properties. The results confirmed that produced nano- and microfibrous materials could be potentially used as scaffolds in three-dimensional cell and tissue cultures.
Polyvinylidene fluoride (PVDF) is one of the most important piezoelectric polymers. Piezoelectricity in PVDF appears in polar b and ɣ phases. Piezoelectric fibers obtained by means of electrospinning may be used in tissue engineering (TE) as a smart analogue of the natural extracellular matrix (ECM). We present results showing the effect of rotational speed of the collecting drum on morphology, phase content and in vitro biological properties of PVDF nonwovens. Morphology and phase composition were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), respectively. It was shown that increasing rotational speed of the collector leads to an increase in fiber orientation, reduction in fiber diameter and considerable increase of polar phase content, both b and g. In vitro cell culture experiments, carried out with the use of ultrasounds in order to generate electrical potential via piezoelectricity, indicate a positive effect of polar phases on fibroblasts. Our preliminary results demonstrate that piezoelectric PVDF scaffolds are promising materials for tissue engineering applications, particularly for neural tissue regeneration, where the electric potential is crucial.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Electrospun materials are good candidates for the design of tissue regeneration scaffolds as they can simulate the natural surroundings of tissue cells. The study proposes electrospun polycaprolactone (PCL)/cefuroxime (CFU) scaffolds for human cell culture and investigates the influence of the antibiotic content on scaffold morphology, thermal and mechanical properties. The increase in the CFU concentration resulted in the reduction of fiber diameter and number of deformations. It also influenced the reduction of scaffold thermal enthalpies and improved scaffold break strength. With regard to cell growth, the scaffolds showed precedence in greater colonization of the HeLa cells. Finally, these scaffolds showed compatibility with standard human cell lines, and thus they can be used for the repair of damaged tissues.
The paper presents the modelling measurement results of the load-displacement relation for scaffold stands and bracings. In the case of stands, there are two sections of curves, i.e. a straight-line and curvilinear section, and in the case of bracings, two straight line sections as well as one curvilinear section are distinguished. As a result of analyses, it is concluded that the sections which can be approximated by means of linear functions should be distinguished in graphs, if possible. On the one hand, this results from the evaluation methods of scaffold components. Nevertheless, the determination of elastic-linear scope of components’ operation is useful in engineering practice during computer calculations. Moreover, the method of determining an intersection point between functions, approximating tests results, along with analysis of the impact of polynomial degree, approximating the research results, on the time and effectiveness of the process of approximating functions selection, are all demonstrated in this article. The proposed method can prove useful in all science fields where curves obtained from any research (laboratory test, in situ test, numerical analysis) require approximation or replacement with a simpler description.
In this study the scaffolds for nasal cartilages replacement were designed using a software called Rhino 3D v5.0. The software parameters considered for the design of scaffolds were chosen and the scaffolds were fabricated using Fused Deposition Modeling (FDM), a rapid prototyping technology, using poly(L-lactic acid) (PLLA) filament. The topographical properties of the scaffolds were calculated through 3D model simulation. The morphology of obtained scaffold was observed by Scanning Electron Microscopy (SEM). The biological properties, i.e. bioactivity of the scaffolds, were assessed in Simulated Body Fluid. On the basis of natural cartilages images the external shape of the scaffold was designed using the 3D modeling software. The FDM is a useful method in fabrication of 3D bioactive implants for cartilage tissue engineering. Thanks to the use of 3D modeling software, it is possible to prepare and manufacture artificial cartilage in a controlled manner. Artificial scaffold made of PLLA polymeric matrix may mimic natural one by shape, topography, geometry, pore size, and their distribution. In addition, it is possible to guarantee appropriately selected biological properties such as biocompatibility and high bioactivity of scaffolds, which was proved using scanning electron microscopy (SEM) analysis. The surface observation of the 3D printed scaffolds showed in vitro formation of apatite after immersion in the SBF. What is more, it is possible to match the scaffold not only to the large cavity but also individually to each patient.
Tendon injury is an increasing problem in medicine due to aging of the population and increased activity demands. Many rodent animal models are used in order to evaluate tendon reconstruction. Although tendon reruptures are a known problem, the outcomes of tendon repair in animal models are rarely discussed in the literature. The goal of the present experimental study was to compare the primary fixation stability of three suture techniques for repair of Achilles tendon defects in a rat model using a collagen scaffold. Methods: Cadaveric left hind limbs of Sprague-Dawley rats were prepared with an Achilles tendon defect of 3 mm and rejoined using a collagen scaffold. Three suture configurations (simple, simple stitch with additional framing suture, and modified Mason–Allen stitch; n = 5 each) underwent tensile testing until complete failure was observed. Results: Under a load of a mean value of 6.6 N, the failure load of simple stitches was the significantly lowest ( p < 0.01). Both, modified Mason–Allen stitches and simple stitches with additional framing suture showed a mean failure load of more than 14 N. Regardless of the suture technique, most of the samples showed failure of tendon due to suture tear-out. The suture material as well as the scaffold remained mostly intact. Conclusions: Although simple end-toend suture techniques are common in the literature, stitches with more suture strands should be preferred. Using techniques like an additional framing suture or modified Mason–Allen stitch, maximum failure load can be doubled and the risk of tendon rerupture may be decreased in vivo.
The paper presents cases of failures of steel scaffoldings damaged by vehicle strikes during the construction of new viaducts over the upgraded A-18 Highway in Poland. After several vehicle strikes into the scaffold structures, their damaged components were no longer serviceable (considering the safety of the construction works being carried out). This put the contractor to additional expenses connected with the replacement of the damaged scaffolding. The causes and consequences of the failures are given, and the necessary solutions adopted in the considered cases (whereby the traffic situation significantly improved) are described. Moreover, it is proposed to increase the minimum vertical clearance required during the building or repairs of bridge structures.