Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  akceleratory elektronów
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Niezawodność czyli prawdopodobieństwo, że akcelerator może pełnić swoje funkcje w określonym czasie w wyznaczonych warunkach, oraz dostępność czyli czas, w którym akcelerator wypełnia swoje zadania to parametry, które w zastosowaniach przemysłowych nabierają podstawowego znaczenia. Wyroby modyfikowane radiacyjnie muszą spełniać wszystkie kryteria przydatności zgodnie z oczekiwaniami rynku, a jednocześnie technologie radiacyjne muszą wykazać się lepszymi wskaźnikami techniczno-ekonomicznymi w porównaniu do konwencjonalnych technologii aktualnie istniejących. Stąd konieczność optymalizacji decyzji inwestycyjnych głównie z uwagi na wysokość kosztów związanych z zakupem akceleratora i jego eksploatacją. Konieczne jest prowadzenie nieustannych wysiłków dla zwiększenia zrozumienia przydatności technologii radiacyjnych, co może być ważnym czynnikiem wzrostu tego przemysłu. W obecnych warunkach współpraca z przemysłem staje się niezbędnym warunkiem inicjowania i rozwijania badań aplikacyjnych niezbędnych przy opracowaniu nowych technologii radiacyjnych.
EN
Reliability that is the probability, that the accelerator can function in the definite time in appointed conditions. Accessibility is the time, in which the accelerator functions properly. Both parameters arę becoming important for industrial facilities exploitation. Products modified by radiation have to fulfill all criteria of usefulness according to market expectations. Radiation technologies have to simultaneously be characterized by better technical and economic ratings in comparison with conventional technologies. Hence the necessity of the optimization of investment decisions related to costs connected with the accelerator purchase and exploitation. The efforts arę necessary for enlargement of the understanding of the radiation processing usefulness what can be the important factor of this industry growth in future. The co-operation with the industry becomes the indispensable condition of initiating and unrolling applied study related to new radiation technologies development.
PL
Rozwój technologiczny akceleratorów stosowanych w technice radiacyjnej jest dobrze widoczny w dłuższej skali czasowej. Obecnie szczególnie intensywnie kontynuowane są prace mające na celu podniesienie sprawności elektrycznej akceleratorów, obniżenie ich ceny oraz podniesienie niezawodności. W niedalekiej przyszłości możliwy będzie transfer technologii z obszaru akceleratorów badawczych stosowanych w fizyce wysokich energii, co pozwali na konstrukcję innowacyjnych urządzeń poszerzających znacząco zakres możliwości technicznych i cenowych. Blisko 3000 akceleratorów elektronów znalazło do chwili obecnej zastosowanie w technice radiacyjnej, która wykorzystuje wiązkę elektronów jako narzędzie do inicjowania pożądanych reakcji chemicznych, modyfikacji materiałów, a także wykorzystuje biobójcze działanie promieniowania jonizującego. Ogromne możliwości upowszechnienia technologii radiacyjnych są związane z wykorzystaniem radiacyjnej obróbki produktów żywnościowych oraz zastosowaniem na szeroką skalę wiązki elektronów w instalacjach związanych z ochrona środowiska. Najliczniejszą grupą akceleratorów elektronów stosowanych w technice radiacyjnej są niskoenergetyczne akceleratory o działaniu bezpośrednim. Szczególną klasą urządzeń są akceleratory rezonansowe, umożliwiające uzyskanie wysokich energii oraz mocy wiązki elektronów. Znacznym osiągnięciem aplikacyjnym była konstrukcja i instalacja rezonansowego akceleratora typu Rhodotron z mocą wiązki 560 kW i energią elektronów 7 MeV wyposażonego w konwertor wiązki elektronów na promieniowanie hamowania. Urządzenie tego typu stanowi ekwiwalent źródła gamma o aktywności 4,4 MCi gamma Co60.
EN
The development of the accelerator technology applied in the radiation processing is well visible in the longer time scale. The current issues are improvement of the electric efficiency of accelerators, the lowering of their price and elevation of accelerator reliability. The transfer of accelerator technology from the field of high energy physics is quite possible in the near future. It will allow to construct innovative devices and offer significantly better technical capabilities and unit price. Nearly 3000 accelerators of electrons have been applied in radiation processing up to now. The electron beam is used as the tool to initiating desirable Chemical reactions, materials modification, and de- contamination of the medical products. Huge capabilities to increase implementation of radiation processing may create electron beam utilization for food products decontamination and use on the wide scale the electron beams in processes connected with the protection of the environment. Low energy direct accelerators are the most numerous group of the electron accelerators applied in the radiation technique. Resonance accelerators are the special class of devices capable to reach high energy and beam power. The considerable achievement is construction and installation of the accelerator Rhodotron type with the beam power of 560 kW and the energy of electrons/ MeV. The described accelerator was equipped with the X-ray converter. This device comprises a direct equivalent of the gamma source with the activity 4.4 MCi of Co60.
PL
8-9 grudnia 2016 r., w Warszawie odbyły się warsztaty EuCARD-2 pt.: “Niskoenergetyczne wiązki elektronów do zastosowań w przemyśle i ochronie środowiska”. Organizatorami warsztatów byli: Rada Naukowo-Technologiczna, Wielka Brytania, Europejska Organizacja Badań Jądrowych (CERN), Szwajcaria, Instytut Chemii i Techniki Jądrowej, Polska, Instytut Fraunhofera, Wydział ds. Wiązki Elektronów i Technologii Plazmowych, Niemcy, Politechnika Warszawska, Polska. W artykule omówiono cele, tematykę warsztatów oraz sposoby upowszechnienia i wykorzystania wyników spotkania. Została załączona lista organizatorów.
EN
EuCARD-2 Workshop, 8-9 December 2016, Warsaw, Poland. Organizers: Science and Technology Facilities Council, UK CERN - The European Organization for Nuclear Research, Switzerland, Institute of Nuclear Chemistry and Technology, Poland, Fraunhofer Institute for Electron Beam and Plasma Technology, Germany, Warsaw University of Technology, Poland. An article presents short information about EuCARD-2 Workshop “Low energy electron beams for industrial and environmental applications”, which was held in December 2016 in Warsaw. Objectives, main topics and expected output of meeting are described. List of organizers is included.
4
Content available ICARST 2017
PL
W artykule omówiono przebieg i tematykę konferencji zorganizowanej po raz pierwszy przez Międzynarodową Agencję Energii Atomowej na temat zastosowań nauki o promieniowaniu i technik radiacyjnych. Wyeksponowano udział naukowców polskich w konferencji, a w szczególności odnotowano obecność licznej grupy pracowników Instytutu Chemii i Techniki Jądrowej. W artykule wspomniano o wystawie towarzyszącej konferencji, podczas której na specjalnym stoisku swoje osiągnięcia prezentował właśnie Instytut Chemii i Techniki Jądrowej.
EN
In the below article the course and topics of 1st International Conference on Applications of Radiation Science and Technology (ICARST) are described. The Conference was organized by the IAEA at the end of April in Vienna. The engagement and contribution of the Polish scientists during the Conference are emphasized, especially the presence of the substantial group of the Institute of Nuclear Chemistry and Technology’s employees. This article also mentions the exhibition accompanying the Conference, where the activity and achievements of the Institute of Nuclear Chemistry and Technology were presented at a special stand.
PL
Rozwój technologiczny akceleratorów stosowanych w technice radiacyjnej jest dobrze widoczny w dłuższej skali czasowej. Obecnie szczególnie intensywnie kontynuowane są prace mające na celu podniesienie sprawności elektrycznej akceleratorów, obniżenie ich ceny oraz podniesienie niezawodności. W niedalekiej przyszłości możliwy będzie transfer technologii z obszaru akceleratorów badawczych stosowanych w fizyce wysokich energii, co pozwali na konstrukcję innowacyjnych urządzeń poszerzających znacząco zakres możliwości technicznych i cenowych. Blisko 3000 akceleratorów elektronów znalazło do chwili obecnej zastosowanie w technice radiacyjnej, która wykorzystuje wiązkę elektronów jako narzędzie do inicjowania pożądanych reakcji chemicznych, modyfikacji materiałów, a także wykorzystuje biobójcze działanie promieniowania jonizującego. Ogromne możliwości upowszechnienia technologii radiacyjnych są związane z wykorzystaniem radiacyjnej obróbki produktów żywnościowych oraz zastosowaniem na szeroką skalę wiązki elektronów w instalacjach związanych z ochroną środowiska. Najliczniejszą grupą akceleratorów elektronów stosowanych w technice radiacyjnej są niskoenergetyczne akceleratory o działaniu bezpośrednim. Szczególną klasą urządzeń są akceleratory rezonansowe, umożliwiające uzyskanie wysokich energii oraz mocy wiązki elektronów. Znacznym osiągnięciem aplikacyjnym była konstrukcja i instalacja rezonansowego akceleratora typu Rhodotron z mocą wiązki 560 kW i energią elektronów 7 MeV, wyposażonego w konwertor wiązki elektronów na promieniowanie hamowania. Urządzenie tego typu stanowi ekwiwalent źródła gamma o aktywności 4,4 MCi gamma Co60. Niezawodność czyli prawdopodobieństwo, że akcelerator może pełnić swoje funkcje w określonym czasie w wyznaczonych warunkach, oraz dostępność czyli czas, w którym akcelerator wypełnia swoje zadania to parametry, które w zastosowaniach przemysłowych nabierają podstawowego znaczenia. Wyroby modyfikowane radiacyjnie muszą spełniać wszystkie kryteria przydatności zgodnie z oczekiwaniami rynku, a jednocześnie technologie radiacyjne muszą wykazać się lepszymi wskaźnikami techniczno- ekonomicznymi w porównaniu do konwencjonalnych technologii aktualnie istniejących. Stąd konieczność optymalizacji decyzji inwestycyjnych głównie z uwagi na wysokość kosztów związanych z zakupem akceleratora i jego eksploatacją. Konieczne jest prowadzenie nieustannych wysiłków dla zwiększenia zrozumienia przydatności technologii radiacyjnych, co może być ważnym czynnikiem wzrostu tego przemysłu. W obecnych warunkach współpraca z przemysłem staje się niezbędnym warunkiem inicjowania i rozwijania badań aplikacyjnych niezbędnych przy opracowaniu nowych technologii radiacyjnych.
EN
The development of the accelerator technology applied in the radiation processing is well visible in the longer time scale. The current issues are improvement of the electric efficiency of accelerators, the lowering of their price and elevation of accelerator reliability. The transfer of accelerator technology from the field of high energy physics is quite possible in the near future. It will allow to construct innovative devices and offer significantly better technical capabilities and unit price. Nearly 3000 accelerators of electrons have been applied in radiation processing up to now. The electron beam is used as the tool to initiating desirable chemical reactions, materials modification, and decontamination of the medical products. Huge capabilities to increase implementation of radiation processing may create electron beam utilization for food products decontamination and use on the wide scale the electron beams in processes connected with the protection of the environment. Low energy direct accelerators are the most numerous group of the electron accelerators applied in the radiation technique. Resonance accelerators are the special class of devices capable to reach high energy and beam power. The considerable achievement is construction and installation of the accelerator Rhodotron type with the beam power of 560 kW and the energy of electrons 7 MeV. The described accelerator was equipped with the X-ray converter. This device comprises a direct equivalent of the gamma source with the activity 4.4 MCi of Co60. Reliability that is the probability, that the accelerator can function in the definite time in appointed conditions. Accessibility is the time, in which the accelerator functions properly. Both parameters are becoming important for industrial facilities exploitation. Products modified by radiation have to fulfill all criteria of usefulness according to market expectations. Radiation technologies have to simultaneously be characterized by better technical and economic ratings in comparison with conventional technologies. Hence the necessity of the optimization of investment decisions related to costs connected with the accelerator purchase and exploitation. The efforts are necessary for enlargement of the understanding of the radiation processing usefulness what can be the important factor of this industry growth in future. The co-operation with the industry becomes the indispensable condition of initiating and unrolling applied study related to new radiation technologies development.
6
Content available remote Zastosowanie chemii radiacyjnej w modyfikacji materiałów i ochronie środowiska
EN
Radiation chemistry is a part of the physical chemistry similary like photo-chemistry, plasma-chemistry, ultrasonic-chemistry etc. Ionizing radiation produces abundant secondary electrons. Following these primary events, the ions, secondary electrons and excited molecules undergo further transformations, exchanging charges and energy and reacting with surrounding molecules, thereby producing free radicals and other reactive species which finally evolve into new stable products. Three main sources of radiation are applied for radiation processing]. These are electron accelerators], gamma sources and X-ray unit based on e-/X conversion process. Radiation processing was used early on for polymer modification. The intermediates formed during material irradiation can follow several reaction paths that result in disproportion, hydrogen abstraction, arrangements and/or the formation of new bonds. Nowadays, the modification of polymers covers radiation cross-linking, radiation-induced polymerization (graft polymerization and curing) and the degradation of polymers. Some polymers predominantly undergo crosslinking other degradation. However new techniques allow crosslinking of polymers which were considered to be degradable only, like PTFE and cellulose derivatives. Regarding natural polymers the biggest application concerns rubber pre-crosslinking in tire industry. The processing of natural polymers is also being developed to elaborate new biodegradable materials. The radiation crosslinked wires and cables show excellent heat resistance (long-term thermal stability and short-term thermal stability) as well as abrasion resistance. Other big application is crosslinking of XLPE type pipes which are widely used for hot water and floor heating. Polybutelene terephtalate (PBT), which is a plastic for electronic industry, can be crosslinked by radiation and lead free soldering materials can be applied in such a case. This method of crosslinking is also applied to manufacture thermoshrinkable tubes and types possessing "memory effect". Through radiation, grafting metal adsorbents and ion exchange membranes can be developed. Radiation is early applied tool in the area of nanomaterials engineering; arrangement of atoms and ions has been performed using ion or electron beams for many years. New trends concern surface curing and development of ion track membranes and controlled release drug-delivery systems. Finally, radiation processing concerns gem stones colorization, development of high temperature resistant fibers (SiC) and semiconductor modification. Over the past few years, radiation processing technologies aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment have been developed. It has been demonstrated that radiation processing based technologies for flue gas treatment (SOX and NOX removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Electron beam technology is among the most promising advanced technologies of new generation. This is a dry-scrubbing process of simultaneous SO2 and NOx removal, where no waste except the fertilizer by-product are generated.The other possibility is application of the process for VOC removal. Tests at the pilot plant constructed at a coal-fired power station were performed with the purpose of estimating the influence of electron beam on VOCs present in flue gas, during SO2 and NOx removal. The removal efficiencies have been ranged from 40% up to 98%. The chlorocarbons including dioxins may be removed with high efficiency as well. During the radiolysis of water reactive radicals of strong oxidizing or reducing properties are formed that can transform the pollutants in the liquids wastes. A large number of substances such as hard surfactants, lignin, pesticides cannot be degraded by conventional biochemical methods and thus escape from decomposition in biological treatment. Research and industrial treatments testify significant improvement of pollutant biodegradability after radiation-oxidation in aerated wastewater.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.