Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  data preparation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful analytical technique with great application potential in biomolecular matter research. SIMS measurements performed on biological samples, due to their complex structure and the content of many small and large atomic molecular compounds, suffer very rich and complex mass spectra of particles, which characterise the content and physio-chemical properties of examined samples. The proper description and understanding of features appearing in the spectra and, consequently, the final data confirming or rejecting the hypothesis put forward in the experiment, largely depend on the experimenter’s correct understanding of the technique itself and its limitations, knowledge of the tested material and its appropriate preparation. These issues mean that obtaining the right answer to the questions posed in the research hypothesis requires not only the correct conduct of experiments but also the appropriate processing of post-experimental data. This study aims to demonstrate the impact of various analytical and experimental procedures applied to reach proper conclusions from TOF-SIM measurements. These are different types of data normalization, the selection of a so-called region of interest (ROI), the selection of representative secondary ions and specific quantification methods, including a combination of experimental parameters. All these aspects were checked and discussed based on the results of the analysis of pancreatic β cells placed in a PBS solution on silicon wafers.
EN
Ductile iron is a material that is very sensitive to the conditions of crystallization. Due to this fact, the data on the cast iron properties obtained in tests are significantly different and thus sets containing data from samples are contradictory, i.e. they contain inconsistent observations in which, for the same set of input data, the output values are significantly different. The aim of this work is to try to determine the possibility of building rule models in conditions of significant data uncertainty. The paper attempts to determine the impact of the presence of contradictory data in a data set on the results of process modeling with the use of rule-based methods. The study used the well-known dataset (Materials Algorithms Project Data Library, n.d.) pertaining to retained austenite volume fraction in austempered ductile cast iron. Two methods of rulebased modeling were used to model the volume of the retained austenite: the decision trees algorithm (DT) and the rough sets algorithm (RST). The paper demonstrates that the number of inconsistent observations depends on the adopted data discretization criteria. The influence of contradictory data on the generation of rules in both algorithms is considered, and the problems that can be generated by contradictory data used in rule modeling are indicated.
EN
The paper outlines the effects of data preparation for Accessibility Model for Evaluation of Transport Infrastructure Policy (AMETIP). A balanced and brief description of the main modes of national transport network (road, rail and air transport) in Poland along with their maps was presented. The quantified details of weighted graph (for AMETIP technical purpose) are ready at the level of a commune including a "road system" layer of 2479 vertices and 19 664 edges (134 "highways", 86 "express roads", 681 "roads", 18 763 "local roads"), a "railway system" layer of 1813 vertices and 364 edges, and an "airline system" layer of 15 vertices and 25 edges (including 11 "EGSS" edges). AMETIP multimodal accessibility in Poland can be calculated for the defined period. Simulation of national infrastructure improvements or novel modes of travel require creating another graph that takes into account all official plans for improvements of all modes of travel. The EU scale of analysis is not possible with this data as it would require to identify data sources for inputs to model all European Union Member States, to redefine and recalculate the graph, to estimate impact of the European Commission TEN-T plan execution on the AMETIP accessibility.
PL
Artykuł przedstawia wyniki przygotowania danych do opisanego w poprzedniej publikacji modelu AMETIP (Model Dostępności Transportowej do Testowania Założeń Polityki). Zaprezentowano zrównoważony i krótki opis głównych środków transportu krajowej sieci transportowej (drogowy, kolejowy i lotniczy) w Polsce wraz z ich mapami. Wyrażone liczbowo elementy grafu ważonego (na potrzeby modelowania AMETIP) są gotowe na poziomie szczegółowości gminy w skali kraju i zawierają warstwę 2479 wierzchołków i 19 664 krawędzi (134 "autostradowych", 86 "dróg ekspresowych", 681 "drogowych", 18 763 "dróg lokalnych"), warstwę „systemu kolejowego" składającą się z 1813 wierzchołków i 364 krawędzi oraz warstwę „systemu linii lotniczych" składającą się z 15 wierzchołków i 25 krawędzi (włączając w to 11 krawędzi „EGSS"). Zaproponowano zasymulować multimodalną dostępność transportową AMETIP w Polsce, zidentyfikować źródła danych do przygotowania wkładu dla wszystkich krajów członkowskich Unii Europejskiej, oszacować wpływ realizacji planów Komisji Europejskiej TEN-T na dostępność transportową AMETIP, a także zasymulować wpływ wprowadzenia potencjalnych, nowych środków podróży (takich jak European Personalized Air Transport System, EPATS) na dostępność transportową AMETIP w Unii Europejskiej.
PL
Do najważniejszych zadań biologii systemowej należy badanie sieci biologicznych, celem ich lepszego poznania i praktycznego wykorzystania. W artykule przedstawiono zintegrowane środowisko BiNArr do wstępnego przetwarzania oraz wizualizacji danych, pochodzących z wybranych baz sieci biologicznych. Zaproponowano jednolitą grafową reprezentację struktur pozyskanych z oryginalnych zasobów oraz przygotowano moduły do ich wizualizacji i edycji. Przewidziano także możliwość eksportu grafów w formatach wymaganych przez aplikacje drążenia grafów. Do prezentacji wybranych funkcji systemu posłużyły – udostępnione w bazach KEGG – mapy szlaków metabolicznych oraz sieci oddziaływań białko-białko, pozyskane z za-sobów DIP.
EN
The investigation of biological networks for their better understanding and making available for practical use is currently the important task in systems biology. The paper presents an integrated environment BiNArr aimed to perform some data preparation operations as well as visualization of the network data stored in biological databases. We proposed the unified graph representation for the structures extracted from original resources and developed the modules for their visualization and edition. Another important feature is the automatic coding of the resulting graphs in several formats required by different graph mining applications. In order to present some capabilities of the application, the structures from example databases representing metabolic pathways (KEGG) as well as protein-protein interactions (DIP) were used.
5
Content available remote Data preparation
EN
The paper presents the current state of the art in the area of data preparation. It proposes a complete methodology for industrial data preparation, as well as a nomenclature connected with the proposed methodology. The reasons behind the need to develop a new methodology are explained. The relevant notions, such as process, stage, task, operation, technique or method, are defined. The paper contains a diagrammatic representation of the proposed methodology.
PL
W artykule przedstawiono dotychczasowy stan zagadnienia przygotowania danych. Zaproponowano kompletną metodykę przygotowania danych przemysłowych i związaną z nią terminologię. W pracy wyjaśniono powody, dla których opracowano nową metodykę. Zdefiniowano stosowane pojęcia, takie jak: proces, etap, zadanie, czynność, technika lub metoda. W pracy umieszczono graficzną prezentację zaproponowanej metodyki.
EN
Works upon computer systems for agricultural goods transport management require, among others, an appropriate preparing the data on transportation network within transport optimization system. Such transportation network is very complicated and contains a variety of detailed information on purchase centres, to which cereals are supplied by farmers; stores, to which purchased cereal is transported; and transportation means that take part in a transport of purchased cereals. Since 80's decade of the 20th century, works upon the optimization of agricultural goods transport process have been performed at The Department of Agricultural Machines and Devices, University of Life Sciences in Lublin. That time, many transportation systems based on various optimization methods were worked out. Particular versions were written in different programming languages, subsequent versions of data processing procedures were worked out and different methods (more and more advanced) for computer map of the area were applied. All data referring to centres the goods are received from, and supplied to, upon the transportation means should be entered into the database in such a way that the software could use them during calculations. The software perfectly facilitates the process of data input. In a simple and clear way, it ensures the accessibility to particular files as well as movements among them. Its role is to generate files used subsequently to calculations in optimization software.
7
Content available Modeling preparation for data mining processes
EN
Today many different software tools for decision support exist; the same is true for data mining which can be seen as a particularly challenging sub-area of decision support. Choosing the most suitable tool for a particular industrial data mining application is becoming difficult, especially for industrial decision makers whose expertise is in a different field. This paper provides a conceptual analysis of crucial features of current data mining software tools, by establishing an abstract view on typical processes in data mining. Thus a common terminology is given which simplifies the comparison of tools. Based on this analysis, objective decisions for the application of decision supporting software tools in industrial practice can be made.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.