Znaleziono wyników: 128
Liczba wyników na stronie
Wyniki wyszukiwania
manufacturing factory on wheels. These panels serve as both the building envelope and the structural system. The specificity of the construction poses many design problems, especially the determination of the strength parameters and stiffness of the double-corrugated panels from which the structure is made. The article presents the results of spatial scanning tests of double-corrugated steel sheets, which were carried out using commonly available 3D scanning devices: Leica 3D Disto and MagiScan app. Additionally, results of numerical analyses performed on scanned samples and a comparison of these results with preliminary laboratory tests are presented in the article. The purpose of scanning was to obtain an accurate and real geometry of the UBM panels, to implement it into numerical software, and then to perform numerical analyses. Commonly available 3D scanning devices were used because using advanced 3D scanners is not popular nowadays for economic reasons, and hand-built geometric models pose a lot of problems and are not accurate enough. The obtained results are promising and form the basis for further research.
was to compare three widely used digitalization technologies: photogrammetry, structured light 3D scanning, and computer tomography. The comparison was conducted in terms of the quality and accuracy of reproducing the geometry of scanned objects, the complexity of the measurement process, its duration, and costs. One of the research assumptions was that during scanning, no interference with the surface of the scanned object was allowed (e.g., using matting sprays or applied markers), which simulated conditions such as scanning museum exhibits. The selected objects for the research had various challenging characteristics for scanning, such as highly glossy, matte, porous, or blurry surfaces, and were made of different materials such as metal, wood, or plastics. The article briefly discusses the operation of each tested technology, the methods and steps taken to obtain the final 3D models, and presents their comparison. The research showed that highly glossy surfaces posed the greatest challenge for photogrammetry and structured light scanning, while high density and thickness of the object negatively affected the quality of results obtained using computer tomography. The most accurate reproduction of geometry was provided by the most expensive computer tomography, while the least accurate was the cheapest technology, photogrammetry. Both methods require lot of time, knowledge and skills from the operator to achieve best results . Often, the structured light scanner proved to be the best solution, combining simple and fast operation with very satisfactory results in terms of accuracy and detail in reproducing the real object.
do celów mieszkaniowych. Obiekt, który podlegał ocenie, to budynek dawnego oddziału zakaźnego (Infectionsbaracke), pochodzący z ok. 1902 r. W procesie diagnostycznym przeprowadzono analizę dostępnej dokumentacji historycznej, skanowanie 3D całości obiektu oraz klasyczną inwentaryzację architektoniczno-budowlaną, wykonano szereg odkrywek zasadniczych elementów konstrukcyjnych budynku oraz fundamentów, sprawdzono ich nośność dla projektowanych warunków obciążeń, określono także warunki wykonania głębokiego wykopu w sąsiedztwie budynku.
adapting post-hospital buildings for residential purposes. The object that was assessed is the building of the former infectious diseases ward (Infectionsbaracke), dating from around 1902. In the diagnostic process, an analysis of the available historical documentation was carried out, 3D scanning of the entire facility and a classic architectural and construction inventory, a number of excavations of the basic structural elements of the building and foundations were made, their load-bearing capacity was checked for the designed load conditions, conditions for the execution of a deep excavation in the vicinity building were also determined.
szeregowo stanowisk kontrolujących poszczególne aspekty wykonania wtrysku. W systemie wykorzystane są dwie kamery, umieszczone w oświetlaczach kopułowych oraz układ czterech profilometrów laserowych. System został zaprojektowany z myślą o zastosowaniach przemysłowych, gdzie dokładność i szybkość inspekcji są kluczowe. System ma parametry pozwalające na zastosowanie go w typowych małoseryjnych liniach produkcyjnych cechujących się istotną dynamiką przezbrojeń, bez potrzeby ograniczania wydajności produkcji, kontrolując detale ze znacznie większą dokładnością względem metod stosowanych przed wdrożeniem. System może skontrolować 30 wtrysków na minutę (multiplikowanych przy krotności form), wykrywając wtrącenia o średnicy 350 μm oraz różnice geometrii między wzorcem a wtryskiem wielkości 100 μm. Może on znaleźć zastosowanie we wszystkich branżach, w których plastikowe części formowane wtryskowo są powszechnie używane, takich jak np. przemysł motoryzacyjny czy elektroniczny oraz AGD. Prototyp prezentowanego systemu został nagrodzony złotym medalem na targach Automaticon w Warszawie.
different aspects of the element. The system includes two cameras placed in dome illuminators and an array of four laser profilometers. It is designed for industrial application, where accuracy and inspection speed are critical, and its parameters allow it to be used in typical production lines without limiting production speed. The produced elements are controlled with much greater precision than before its implementation. The system can inspect 30 elements per minute, detecting inclusions of 350 μm in diameter and geometric differences between the pattern and the injection of up to 100 μm. It can be applied in all industries where injection-molded plastic parts are commonly used, such as the automotive, electronics industries, and home appliances. The prototype of the presented system was awarded a gold medal at the Automaticon fair in Warsaw.
5
context of growing needs for implementing fast and accurate methods for diagnosing the technical condition of objects. Through several examples, we discuss various 3D scanning techniques and methods of processing digital data that can be used to recreate project documentation and numerical simulations.
rosnących potrzeb na wdrożenie szybkich i dokładnych metod diagnostyki stanu technicznego obiektów. Na przykładach omawiamy różne techniki skanowania 3D oraz metody obróbki danych cyfrowych, które mogą być wykorzystane do odtworzenia dokumentacji projektowej i symulacji numerycznych.
for the automated design and rapid production of personalized orthopedic and prosthetic devices through 3D printing technology. This paper details the system's capabilities and methodologies behind it, which include the design and manufacturing of various devices such as wrist hand orthoses (WHO) and ankle foot orthoses (AFO), among others. These devices are crafted using data obtained from precise anthropometric measurements, allowing for high customization to meet individual patient needs. The AutoMedPrint system enhances the quality of life for patients by providing devices that are not only functional and cost-effective but also rapidly produced, ensuring timely intervention. Case studies demonstrate the system's effectiveness in practical scenarios, highlighting its potential to revolutionize orthopedic care by integrating new materials and technologies that adapt to changing medical and patient requirements. The discussion extends to the lifecycle of the produced devices, emphasizing sustainability and continuous improvement, ensuring the system's relevance and efficacy in modern medical practice.
covers all the steps, from initial object selection to importing a scanned 3D model into a virtual reality environment. Various objects were selected and scanned to test this methodology and its utilization potential. Finally, the paper evaluates the potential utilization of this methodology for immersive virtual reality applications for education and various methods of industrial engineering.
akwizycji i wstępnej obróbki obrazu powierzchni wlewka, opracowano algorytm wykrywania wad wlewka, który wykorzystywał funkcję erozji i dylatacji przy pomocy trójwymiarowego elementu strukturalnego w celu stworzenia gradientu morfologicznego. Ostatnim etapem było opracowanie algorytmów sterowania ramieniem robota w celu zaznaczenia wykrytych wad na powierzchni modelu wlewka.
out. A method of canvassing and initial treatment of ingot surface picture was elaborated. An algorithm for detection of ingots faults which apply the erosion and dilation functions by means of three-dimensional structure element in order to create morphological gradient was elaborated. Elaboration of algorithms for steering of the robot showing detected faults at ingots surface was elaborated finally
konstrukcyjnej wraz z wynikami badań i obliczeń. Podaje też konkluzje dotyczące niezbędnych działań naprawczych. Działania te zestawia z wymaganiami konserwatora zabytków, które należało skonfrontować z oczekiwaniami inwestora i warunkami projektowania bezpiecznej konstrukcji. Na koniec pokazuje zastosowane rozwiązania wzmocnienia stropów drewnianych i więźby dachowej, zgodne z wymaganiami konserwatora zabytków.
building and construction inventory along with the results of calculation tests and provides conclusions regarding necessary corrective actions. He puts together these activities with the requirements of the office for protection of historical monuments, which had to be confronted with the investor’s expectations and the conditions for designing a safe structure. Finally, it shows the solutions used to strengthen wooden ceilings and roof trusses, in accordance with the requirements of the office for protection of historical monuments.
dynamic conditions. A set of underwear and two types of outerwear for workers of the energy sector and the chemical industry were selected for the study. Results showed that the value of thermal insulation (regardless of the type of outerwear) first increased with increasing clothing size.
11
odzwierciedleniu ich rzeczywistej geometrii ważny jest czas niezbędny do zgromadzenia danych o obiekcie i precyzja wykonania pomiarów. Na przestrzeni ostatnich lat techniki pomiarów i narzędzia wykorzystywane w trakcie inwentaryzacji znacznie ewoluowały. Stosowane nowoczesne i innowacyjne rozwiązania technologiczne pozwalają na szybsze i precyzyjniejsze gromadzenie dużych zbiorów informacji. Zastosowanie skanera laserowego pracującego w technologii 3D do gromadzenia danych przestrzennych może rozwiązać problem niskiej precyzji pomiaru wykonywanego w sposób tradycyjny (tj. manualny) lub poprawić łatwość i wydajność wykonywanych pomiarów.
the time required to collect data about the building and the precision of the measurements are important. Over the last few years, the measurement techniques and tools used during inventories have evolved considerably. The modern and innovative technological solutions used allow for a faster and more precise collection of large sets of information. The use of a laser scanner, working in 3D technology for the collection of spatial data, can solve the problem of low precision of measurements taken in the traditional way (i.e. manually) or improve the ease and efficiency of the measurements performed.
12
of an advanced optical measuring system – the GOM Atos 3D scanner. The part selected for the research in question was the water pump body as a representative example of an element with adequate dimensional and shape conditions (high degree of folding and geometric differentiation) allowing, based on the results of coordinate measurements determined in the research process, to define the potential area of application of AM models made of thermoplastic material and resin hardened with UV light. The performed tests showed the accuracy of individual AM methods at a level within the range declared by machine manufacturers. However, the PolyJet body is characterized by a much higher accuracy of the shape mapping compared to the FFF body. The dimensional accuracy is also higher for the resin model in relation to the thermoplastic model, which results primarily from the thickness of the elementary layer of the model material applied by the printing module defined for individual incremental processes – 16 μm for RGD 720 and 0.2 mm for ABS. Detailed elaboration and analysis of the research results are presented in this publication.
static torsion test, the results of which are crucial for parts such as machine shafts, hubs, couplings, etc. Hence the idea of conducting the research in question. The samples were made in different settings relative to the machine's working platform and subjected to post-processing in two variants – by water-soaking and furnace-heating – in order to determine the influence of the orientation of the model in the manufacturing process and the type of post-processing on torsional strength. The produced samples were additionally subjected to a preliminary dimensional and shape verification due to the significant impact of the accuracy of the models in the SLS process on the operation of the above-mentioned machine parts. Based on the analysis of the test results, it was found that the highest torsional strength was determined for the furnace-heated samples. In addition, the highest mapping accuracy was found for models positioned vertically in relation to the machine's working platform.
the determination of regression equations. The concept of manufacturing objects of a very complex shape, by any person, under various conditions through the use of a low-cost device became the basis for this thesis topic. Curing time, layer thickness, and lift speed are among the basic parameters, with a large range of manipulation. A hypothesis was formulated that these three parameters are crucial to produce a part with the smallest possible deviations from the computer model. A handheld scanner was used to scan the samples and compare them with the CAD model. Based on the study, optimal parameters for layer thickness, curing time and lift speed were proposed.
was employed. A localized volumetric wear coefficient was proposed, allowing for wear analysis and improving the accuracy of the Holm-Archard model. The coefficient of local volumetric wear shows the influence of the nominal shape and the slip trajectory of the abrasive particle along the elementary surface on the intensity of wear. At local volumetric wear coefficient > 0.3, this factor determines the intensity of surface wear. Volumetric wear characteristics are the basis for prediction of wear consequences for different materials and techniques of reinforcement of working surfaces, subject to intensive wear in abrasive soil mass. The reliability of the study is confirmed by the comparison with the mass method for wear assessment and the results of the application of the proposed method for different conditions of abrasive wear of operating parts.
proposed in this paper, which aims to overcome the inaccuracy and inefficiency of the manual cutting process. Firstly, the surface of the irregular solid material is scanned by a tracking 3D laser scanner, and a triangular mesh file is generated. Secondly, the defects of the 3D model are repaired by reverse engineering, and then the 3D model file of the irregular objects is generated. Finally, the cutting position of the specified weight solid material is calculated by the calculation algorithm in UG software. In short, this research creates a new method for processing data collected by the 3D scanner, by working jointly with multiple devices and software, facilitating the cutting of irregular solid materials with specified weights. Additionally, the system has the advantage of accuracy and efficiency over the experience of workers.
dwóch technologii – FDM i SLA. Dokonano również weryfikacji opracowanych modeli na podstawie porównania z wymiarami obiektu rzeczywistego oraz wydrukowanych prototypów.
on 3D scans. The models were also prepared for printing using two technologies - FDM and SLA. The developed models were eventually verified on the basis of comparison with the dimensions of the real object and printed prototypes.
This type of cognitive method cannot be used in museology and historical architecture. Current attempts to solve this problem lead to the use of additive technology understood as 3D printing. The paper presents a modified procedure for obtaining digital 3D models with the use of Autodesk Inventor version 2021, dedicated to creating scalable replicas of architectural objects using additive technology. The applied procedure uses the decomposition of the object into its components and the acquisition of data from terrestrial 3D laser scanning (FARO Focus 3D scanner, Faro Scene software). Printing in the Fused Filament Fabrication technology of a designed minaret representing the architecture of the Timuridian period (minaret of the Ulugh Beg Madrasa in Samarkand, Uzbekistan), originating from the Silk Road area, was carried out due to the size of the facility, divided into several parts. The obtained replica of the minaret was presented to people with simulated pattern dysfunction and tested in a pilot test. The obtained results confirmed that the decomposition of the object for the purposes of 3D modelling, the diversified scaling of individual elements to make real 3D replicas of the digital model facilitated the kinesthetic recognition of the relevant architectural object for the respondents.
Ograniczanie wyników