Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Borel sets
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We study the existence of Borel sets B ⊆ ω2 admitting a sequence ηα : α<λ of distinct elements of ω2 such that (ηα +B)∩(ηβ +B) ≥ 6 for all α, β < λ but with no perfect set of such η’s. Our result implies that under the Martin Axiom, if ℵα < c, α<ω1 and 3 ≤ ι<ω, then there exists a Σ0 2 set B ⊆ ω2 which has ℵα many pairwise 2ι–nondisjoint translations but not a perfect set of such translations. Our arguments closely follow Shelah [7, Section 1].
2
Content available remote An ω-Power of a Finitary Language Which is a Borel Set of Infinite Rank
EN
ω-powers of finitary languages are ω-languages s in the form Vω, where V is a finitary language over a finite alphabet Σ. Since the set Σ,sup>ω of infinite words over Σ can be equipped with the usual Cantor topology, the question of the topological complexity of ω-powers naturally arises and has been raised by Niwinski [13], by Simonnet [15], and by Staiger [18]. It has been proved in [4] that for each integer n ≥ 1, there exist some ω-powers of context free languages which are Πn0-complete Borel sets, and in [5] that there exists a context free language L such that Lω is analytic but not Borel. But the question was still open whether there exists a finitary language V such that Vω is a Borel set of infinite rank. We answer this question in this paper, giving an example of a finitary language whose ω-power is Borel of infinite rank.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.