Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 268

Liczba wyników na stronie
first rewind previous Strona / 14 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wavelet transform
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 14 next fast forward last
EN
In this research, discrete wavelet transform (DWT) is combined with MLR and ANN to develop WMLR and WANN hybrid models, respectively, for the Brahmaputra river (Pancharatna station) flow forecasting. Daily flow data for the period of 10 year were decomposed (up to fifth level) into detailed and approximation coefficients (using Daubechies wavelets db1, db2, db3, db8 and db10) which were fed as input to MLR and ANN to get the predicted discharge values two days, four days, seven days and 14 days ahead. For all lead times, the WMLR-db10 model was found to be superior as compared to WANN-db1, WANN-db2, WANN-db3, WANN-db8, WMLR-db1, WMLR-db2, WMLR-db3, WMLR-db8 and single MLR and ANN models. During testing period, the values of determination coefficient (R2) and RMSE for WMLR-db10 model for two-, four-, seven- and 14-day lead time were found to be, respectively, 0.996 (751.87 m3·s–1), 0.991 (1,174.80 m3·s–1), 0.984 (1,585.02 m3·s–1), and 0.968 (2,196.46 m3·s–1). Also, it was observed that for lower order wavelets (db1, db2, db3) WANN’s performance was better, and for higher order wavelets (db8, db10) WMLR’s performance was better. Correspondingly, it was observed that all hybrid models’ efficiency increased with increase in the decomposition level.
EN
This paper extracts and separates seasonal term of GPS (Global Positioning System) time series based on empirical mode decomposition and wavelet transformation. Through time series analysis of 9 GPS continuous stations in Dali, Yunnan, it is found that the vertical (U), north-south (N) and east-west (E) components of the relative motion have distinct annual and semi-annual period components. In the vertical direction, the U component has the strongest seasonal deformation characteristics, on the annual period term, between each station the correlation coefficient reaches 0.98, this is consistent with the relevant research results of many researchers; In horizontal direction, seasonal deformation is also more significant, the N component annual and semi-annual period signals are more obvious and the correlation coefficient is high, but the E component 9 stations signal are relatively scattered and poorly correlated. On the semi-annual period, the N and U directions have a very obvious and consistent semi-annual periodicity, and their two correlation coefficient numbers are 0.95 and 0.94 on average, respectively, the N and E are negatively correlated with a correlation coefficient of -0.98. In time series trend term, 9 stations show southeast movement in horizontal direction, but have great differences in vertical movement trend. Among them, YNLJ, YNYS, YNSD and YNLC are linear uplift movement with good consistency. YNYA, YNCX and YNJD show overall uplift movement, but with subsidence fluctuation, the trend of the three stations is very similar, with an average correlation coefficient reaches 0.8; XIAG station shows uplift movement as a whole, the relative motion trend in the E direction is very different from other stations in phase and amplitude, probably because it is closer to the Erhai lake and more susceptible to the influence of water level changes; YNYL also has different motion changes at different times, but the overall performance is subsidence motion. The analysis suggests that the GPS time series contains rich information on the seasonal deformation of the Earth’s crust, and precipitation has an important role in influencing the seasonal deformation of continuous stations.
PL
W artykule przedstawiono wyniki analiz dotyczących oceny poprawności działania opracowanego algorytmu detekcji stanu pracy linii elektroenergetycznych wysokich napięć (WN) o zintensyfikowanych zdolnościach przesyłowych podczas wystąpienia zwać łukowych. Opisano wybrany model łuku pierwotnego, odpowiedni do odwzorowania początkowych stanów zwarć wielkoprądowych w liniach WN. Po implementacji wybranego rozwiązania w modelu symulacyjnym, dokonano oceny poprawności detekcji zwarć łukowych przez opracowany algorytm.
EN
The paper presents the results of analyses concerning the evaluation of the correctness of the developed algorithm for distinguishing the operating states of overhead HV transmission lines with increased capacity during arc faults. The research focused on a primary arc model appropriate for modelling high-current short circuits in HV lines. After the implementation of the selected arc model solution in the simulation model, the correctness of arc fault detection by the developed algorithm was evaluated.
EN
The article presents a proposal for the synthesis of the instantaneous value of the output voltage of a multi-level cascade voltage inverter. An analytical method of determining the set of Haar orthogonal wavelets and a proposal for the synthesis of the output waveforms of the inverter based on the wavelet transform are described. On the basis of the Haar wavelet, signals controlling the keys of two-level inverters connected in cascade and forming a multi-level voltage inverter were calculated. A simulation of the cooperation of such an inverter with a resistive-inductive load was carried out and the influence of the change of the time constant on the course of the output voltage was demonstrated.
PL
W artykule przedstawiono propozycję syntezy wartości chwilowej napięcia wyjściowego wielopoziomowego kaskadowego falownika napięcia. Opisano analityczną metodę wyznaczania zbioru falek ortogonalnych Haara oraz propozycję syntezy przebiegów wyjściowych falownika w oparciu o transformatę falkową. Na podstawie falki Haara obliczono sygnały sterujące kluczami połączonych kaskadowo dwupoziomowych falowników tworzących wielopoziomowy falownik napięcia. Przeprowadzono symulację współpracy takiego falownika z obciążeniem rezystancyjno-indukcyjnym oraz wykazano wpływ zmiany stałej czasowej na przebieg napięcia wyjściowego.
EN
High-impedance fault HIF occurs when an energized conductor makes contact with a surface with a high impedance. Conventional overcurrent protection cannot detect this fault due to the low fault current, and there is no effective protection for HIFs. This paper introduces a novel method for detecting HIFs in low voltage distribution systems by decomposing neutral current using Wavelet and FFT. Modeling HIF fault data in Matlab to analyze the proposed scheme. Simulations demonstrate that the proposed method can accurately detect HIF and distinguish it.
PL
Błąd wysokiej impedancji HIF występuje, gdy przewodnik pod napięciem styka się z powierzchnią o wysokiej impedancji. Konwencjonalne zabezpieczenie nadprądowe nie jest w stanie wykryć tej usterki z powodu niskiego prądu zwarciowego i nie ma skutecznej ochrony dla HIF. W artykule przedstawiono nowatorską metodę wykrywania HIF w systemach dystrybucji niskiego napięcia poprzez dekompozycję prądu neutralnego za pomocą funkcji Wavelet i FFT. Modelowanie danych o błędach HIF w Matlabie w celu analizy proponowanego schematu. Symulacje pokazują, że proponowana metoda może dokładnie wykrywać i rozróżniać HIF.
EN
The article reviews the results of experimental tests assessing the impact of process parameters of additive manufacturing technologies on the geometric structure of free-form surfaces. The tests covered surfaces manufactured with the Selective Laser Melting additive technology, using titanium-powder-based material (Ti6Al4V) and Selective Laser Sintering from polyamide PA2200. The evaluation of the resulting surfaces was conducted employing modern multiscale analysis, i.e., wavelet transformation. Comparative studies using selected forms of the mother wavelet enabled determining the character of irregularities, size of morphological features and the indications of manufacturing process errors. The tests provide guidelines and allow to better understand the potential in manufacturing elements with complex, irregular shapes.
EN
Muscle fatigue is defined as a reduction in the capability of muscle to exert force or power. Although surface electromyography (sEMG) signals during exercise have been used to assess muscle fatigue, analyzing the sEMG signal during dynamic contractions is difficult because of the many signal distorting factors such as electrode movements, and variations in muscle tissue conductivity. Besides the non-deterministic and non-stationary nature of sEMG in dynamic contractions, no fatigue indicator is available to predict the ability of a muscle to apply force based on the sEMG signal properties. In this study, we designed and manufactured a novel wearable sensor system with both sEMG electrodes and motion tracking sensors to monitor the dynamic muscle movements of human subjects. We detected the state of muscle fatigue using a new wavelet analysis method to predict the maximum isometric force the subject can apply during dynamic contraction. Our method of signal processing consists of four main steps. 1- Segmenting sEMG signals using motion tracking signals. 2- Determine the most suitable mother wavelet for discrete wavelet transformation (DWT) based on cross-correlation between wavelets and signals. 3- Deoinsing the sEMG using the DWT method. 4- Calculation of normalized energy in different decomposition levels to predict maximal voluntary isometric contraction force as an indicator of muscle fatigue. The monitoring system was tested on healthy adults doing biceps curl exercises, and the results of the wavelet decomposition method were compared to well-known muscle fatigue indices in the literature.
PL
W referacie przedstawiono wyniki analiz dotyczących wykorzystania przekształceń falkowych do przetwarzania sygnałów prądowych dla celów rozróżniania stanów pracy napowietrznych linii WN o zintensyfikowanych zdolnościach przesyłowych. W liniach takich dopuszczalne obciążenia prądowe są znacznie większe niż w tradycyjnych rozwiązaniach. Jednak powoduje to znaczne zbliżanie się fazorów impedancji dla tych stanów i stanów zwarciowych, co może skutkować dla dużych obciążeń, nieselektywnym wyłączeniem linii przez zabezpieczenie odległościowe.
EN
The paper presents the results of a research on the application of wavelet transforms for distinguishing the operating states of overhead HV transmission lines with increased capacity. In such lines, the allowable loads are considerably higher than in traditional solutions. However, the increased permissible load causes the impedance phasors for these states and short-circuit states are closer together. This can cause the line to be tripped by distance protection for high loads.
9
Content available remote Analysis of electricity consumption forecasting methods for the coal industry
EN
The paper considers a forecast model of electricity consumption of a coal industry enterprise based on three forecast methods, namely the wavelet transform, the vector method, and the recurrent neutral network. A comparative analysis of these methods is performed. For preprocessing the data for forecasting by vector and recurrent methods, the Singular Spectrum Analysis method was chosen. The structure of the model allows taking into account individual features of the operating cycle of the production process and smoothing the noise components and outliers. The results of a short-term hourly forecast for one day ahead are presented with the comparison of the obtained values. The results of short-term electricity consumption forecast were verified based on the actual data of the coal industry enterprise in order to assess the adequacy of the model to the actual values. The proposed models can be applied in automated software systems for predictive control of a production process of a coal mining enterprise.
PL
W pracy uwzględniono model prognozowania zużycia energii elektrycznej przez przedsiębiorstwo przemysłu węglowego w oparciu o trzy metody prognozowania, a mianowicie transformatę falkową, metodę wektorową oraz sieć neutralną rekurencyjną. Przeprowadzana jest analiza porównawcza tych metod. Do wstępnego przetwarzania danych do prognozowania metodami wektorowymi i rekurencyjnymi wybrano metodę Singular Spectrum Analysis. Konstrukcja modelu pozwala na uwzględnienie indywidualnych cech cyklu operacyjnego procesu produkcyjnego oraz wygładzenie składowych i wartości odstających hałasu. Przedstawiono wyniki krótkookresowej prognozy godzinowej na jeden dzień do przodu wraz z porównaniem uzyskanych wartości. Wyniki prognozy krótkookresowego zużycia energii elektrycznej zostały zweryfikowane na podstawie danych rzeczywistych przedsiębiorstwa przemysłu węglowego w celu oceny adekwatności modelu do wartości rzeczywistych. Zaproponowane modele mogą znaleźć zastosowanie w zautomatyzowanych systemach oprogramowania do predykcyjnego sterowania procesem produkcyjnym przedsiębiorstwa górniczego.
EN
This article presents selected physical diagnostic methods used in otorhinolaryngology and results of their application. In addition to the applications of methods using the capabilities of selective sensors, selected methods of hybrid diagnostics were also presented - for assessment of parameters of respiratory processes, with polysomnography as an example of using both typical diagnostic methods dedicated to otolaryngology, as well as standard EEG and ECG methods. It has been shown that in some special cases of respiratory disorders, measurements of the air flow in the respiratory tract can be supplemented with pressure measurements in selected positions within the airways. The presented optical methods and diagnostic systems are very often used in the diagnosis of diseases not specific for otolaryngology occurring in the area of the head and neck. The presented material is the second part of the study discussing both standard and widely used diagnostic methods. All presented methods are dedicated to otolaryngology. This text is a continuation of the material published in No 4 of 2021 [1].
EN
Nowadays, Medical imaging modalities like Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT), and Computed Tomography (CT) play a crucial role in clinical diagnosis and treatment planning. The images obtained from each of these modalities contain complementary information of the organ imaged. Image fusion algorithms are employed to bring all of this disparate information together into a single image, allowing doctors to diagnose disorders quickly. This paper proposes a novel technique for the fusion of MRI and PET images based on YUV color space and wavelet transform. Quality assessment based on entropy showed that the method can achieve promising results for medical image fusion. The paper has done a comparative analysis of the fusion of MRI and PET images using different wavelet families at various decomposition levels for the detection of brain tumors as well as Alzheimer’s disease. The quality assessment and visual analysis showed that the Dmey wavelet at decomposition level 3 is optimum for the fusion of MRI and PET images. This paper also compared the results of several fusion rules such as average, maximum, and minimum, finding that the maximum fusion rule outperformed the other two.
EN
The advancements in artificial intelligence play a significant role in solving the problems of researchers and engineers to develop prediction models with higher accuracy over the analytical and numerical models. The wavelet ensemble artificial intelligence model has a widespread application in forecasting hydrological datasets. The signal decomposition type, level and the mother wavelet affect the model performance in wavelet-based approaches. The present analysis focuses on studying the significance of the level and type of decomposition in wavelet transform for pre-processing the input variables to predict the target variable. In this work, to forecast seasonal suspended sediment load of the Kallada River basin in Kerala, two types of decomposition with decomposition levels ranging from 2 to 7 were adopted using seasonal flow data (wet and dry seasons). To rank the WANN models, compromise programming was adopted using the results based on statistical performance indicators and compared with the performance of the conventional FFNN model. From the accuracy assessment and ranking, type-2 with 5th level decomposition can capture the actual periodicity of the signal and predict the suspended sediment load with higher accuracy. It also shows the capability to predict the extreme events of time series.
EN
The paper describes and compares two forms of wavelet transformation: discrete (DWT) and continuous (CWT) in the analysis of electrocardiograms (ECG) to detect the anomaly. The anomalies have been limited to two types: cardiac and congestive heart failure. Two independent approaches to the problem have been considered. One is based on discrete wavelet transformation and feature generation based on statistical parameters of the results of the transformed ECG signals. These descriptors, after selection, are delivered as the input attributes to different classifiers. The second approach applies continuous wavelet transformation of ECG signals and the resulting two-dimensional image formed in time-frequency dimensions represents the input to the convolutional neural network, which is responsible for the generation of the diagnostic features and final classification. The experiments have been performed on the publically available database Complex Physiologic Signals PhysioNet. The calculations have been done in Python. The results of both approaches: DWT and CWT have been discussed and compared.
PL
Artykuł predstawia dwa podejścia do wykrywania anomalii w sygnalach ECG. Jako anomalie rozważane są: arytmia i zastoinowa niewydolność serca. Podstawą analizy jest sygnał ECG poddany transformacji falkowej w dwu postaciach: transformacja dyskretna oraz transformacja ciągła. W przypadku transformacji dyskretnej sygnał ECG poddany jest dekompozycji falkowej na kilku poziomach a wyniki tej dekompozycji (sygnały szczegółowe i sygnał aproksymacyjny ostatniego poziomu) podlegają opisowi statystycznemu tworząc zbiór deskryptorów numerycznych – potencjalnych cech diagnostycznych. Po przeprowadzonej selekcji stanowią one atrybuty wejściowe dla zespołu 9 klasyfikatorów. W drugim podejściu sygnał ECG jest poddany ciągłej transformacji falkowej generując dwuwymiarową macierz w postaci obrazu. Zbiór takich obrazów podawany jest na wejście głębokiej sieci neuronowej CNN, która w jednej strukturze dokonuje jednocześnie generacji cech diagnostycznych i klasyfikacji. Eksperymenty numeryczne przeprowadzone zostały na ogólnie dostępnej bazie danych Complex Physiologic Signals PhysioNet. Wyniki eksperymentów wykazały przewagę podejścia wykorzystujacego dyskretną transformację falkową.
EN
In a number of EU countries medium voltage networks operate in the compensated neutral mode. In that case an arc suppression coil is commonly shunted with a resistor. The most common type of damage to such networks is a single phase-to-ground fault. The paper presents the method for two stage identification of a line where the fault has occured. The first stage is based on the analysis of high frequency components arising under transients. At the first stage a continuous wavelet transform is used to find frequencies. The second stage involves an analysis of the steady-state mode of a single phase-to-ground fault. Based on the energy spectrum of higher harmonics a damaged line is detected. To determine the energy spectrum at the second stage of the work a wavelet packet transform is applied. Wavelet transform has a number of advantages compared with short-time Fourier transform (STFT), particularly when analyzing non-stationary modes. The proposed method can be implemented to organize digital protection against ground faults.
PL
Sieci średniego napięcia w wielu krajach UE działają w skompensowanym trybie neutralnym. W takim przypadku cewka gasząca łuk jest zwykle bocznikowana przez rezystor. Najczęstszym rodzajem uszkodzeń w takich sieciach jest zwarcie jednofazowe do ziemi. W artykule przedstawiono technikę dwuetapowej identyfikacji linii, na której nastąpiło uszkodzenie. Pierwszy etap opiera się na analizie składowych wysokiej częstotliwości powstających pod wpływem stanów nieustalonych. W pierwszym etapie do znalezienia częstotliwości używana jest ciągła transformata falkowa. Drugi etap obejmuje analizę stanu ustalonego pojedynczego zwarcia międzyfazowego. Na podstawie widma energii wyższych harmonicznych wykrywana jest uszkodzona linia. Do wyznaczenia widma energii w drugim etapie pracy stosuje się transformację pakietu falkowego. Transformacja falkowa ma wiele zalet w porównaniu z krótkotrwałą transformatą Fouriera, szczególnie w przypadku analizy modów niestacjonarnych. Zaproponowaną metodę można zaimplementować do organizacji cyfrowej ochrony przed zwarciami doziemnymi.
EN
The rapidly developing measurement techniques and emerging new physical methods are frequently used in otolaryngological diagnostics. A wide range of applied diagnostic methods constituted the basis for the review study aimed at presenting selected modern diagnostic methods and achieved diagnostic results to a wider group of users. In this part, the methods based on measuring the respiratory parameters of patients were analysed. Respiration is the most important and necessary action to support life and its effective duration. It is an actual gas exchange in the respiratory system consisting of removing CO2 and supplying O2. Gas exchange occurs in the alveoli, and an efficient respiratory tract allows for effective ventilation. The disruption in the work of the respiratory system leads to measurable disturbances in blood saturation and, consequently, hypoxia. Frequent, even short-term, recurrent hypoxia in any part of the body leads to multiple complications. This process is largely related to its duration and the processes that accompany it. The causes of hypoxia resulting from impaired patency of the respiratory tract and/or the absence of neuronal respiratory drive can be divided into the following groups depending on the cause: peripheral, central and/or of mixed origin. Causes of the peripheral form of these disorders are largely due to the impaired patency of the upper and/or lower respiratory tract. Therefore, early diagnosis and location of these disorders can be considered reversible and not a cause of complications. Slow, gradually increasing obstruction of the upper respiratory tract (URT) is not noticeable and becomes a slow killer. Hypoxic individuals in a large percentage of cases have a shorter life expectancy and, above all, deal with the consequences of hypoxia much sooner.
EN
The analysis of protein coding regions of DNA sequences is one of the most fundamental applications in bioinformatics. A number of model-independent approaches have been developed for differentiating between the protein-coding and non-protein-coding regions of DNA. However, these methods are often based on univariate analysis algorithms, which leads to the loss of joint information among four nucleotides of DNA. In this article, we introduce a method on basis of the noise-assisted multivariate empirical mode decomposition (NA-MEMD) and the modified Gabor-wavelet transform (MGWT). The NA-MEMD algorithm, as a multivariate analysis tool, is utilized to reconstruct the numerical analyzed sequence since it enables a matched-scale decomposition across all variables and eliminates the mode mixing. By virtues of NA-MEMD, the MGWT method achieves a stable improvement on the general identification performance. We compare our method with other Digital Signal Processing (DSP) methods on two representative DNA sequences and three benchmark datasets. The results reveal that our method can enhance the spectra of the analyzed sequences, and improve the robustness of MGWT to different DNA sequences, thus obtaining higher identification accuracies of protein coding regions over other applied methods. In addition, another comparative experiment with the model-dependent method (AUGUSTUS) on the recently proposed benchmark dataset G3PO verifies the superiority of model-independent methods (especially NA-MEMD-MGWT) for identifying coding regions of the poor-quality DNA sequences.
EN
Background: Mental fatigue is one of the most causes of road accidents. Identification of biological tools and methods such as electroencephalogram (EEG) are invaluable to detect them at early stage in hazard situations. Methods: In this paper, an expert automatic method based on brain region connectivity for detecting fatigue is proposed. The recorded general data during driving in both fatigue (the last five minutes) and alert (at the beginning of driving) states are used in analyzing the method. In this process, the EEG data during continuous driving in one to two hours are noted. The new feature of Gaussian Copula Mutual Information (GCMI) based on wavelet coefficients is calculated to detect brain region connectivity. Classification for each subject is then done through selected optimal features using the support vector machine (SVM) with linear kernel. Results: The designed technique can classify trials with 98.1% accuracy. The most significant contributions to the selected features are the wavelet coefficients details 1_2 (corresponding to the Beta and Gamma frequency bands) in the central and temporal regions. In this paper, a new algorithm for channel selection is introduced that has been able to achieve 97.2% efficiency by selecting eight channels from 30 recorded channels. Conclusion: The obtained results from the classification are compared with other methods, and it is proved that the proposed method accuracy is higher from others at a significant level. The technique is completely automatic, while the calculation load could be reduced remarkably through selecting the optimal channels implementing in real-time systems.
EN
The strong earthquake with magnitude 6.9 occurred ofshore at the northernmost edge of the Samos Island and was strongly felt in the north Aegean islands and İzmir metropolitan city. In this study, the effective elastic thicknesses of the lithosphere and seismogenic layer thickness were correlated with each other in order to understand the nature of the earthquakes. We determined that the upper and lower depth limits of seismogenic layer are in a range of 5–15 km, meaning that only the upper crust is mostly involved in earthquakes in the study area. The fact that seismogenic layer and effective elastic thicknesses are close to each other indicates that the earthquake potential may be within the seismogenic layer. Following that, we estimate the stress feld from the geoid undulations as a proxy of gravity potential energy in order to analyze the amplitude and orientation of the stress vectors and seismogenic behavior implications. The discrete wavelet transform has been carried out to decompose the isostatic residual gravity anomalies into horizontal, vertical and diagonal detail coefcients. The results delineated edges of gravity anomalies that reveal some previously unknown features.
EN
Motivated by ideas from two-step models and combining second-order TV regularization in the LLT model, we propose a coupling model for MR image reconstruction. By applying the variables splitting technique, the split Bregman iterative scheme, and the alternating minimization method twice, we can divide the proposed model into several subproblems only related to second-order PDEs so as to avoid solving a fourth-order PDE. The solution of every subproblem is based on generalized shrinkage formulas, the shrink operator or the diagonalization technique of the Fourier transform, and hence can be obtained very easily. By means of the Barzilai–Borwein step size selection scheme, an ADMM type algorithm is proposed to solve the equations underlying the proposed model. The results of numerical implementation demonstrate the feasibility and effectiveness of the proposed model and algorithm.
EN
This study investigates the properties of the brain electrical activity from different recording regions and physiological states for seizure detection. Neurophysiologists will find the work useful in the timely and accurate detection of epileptic seizures of their patients. We explored the best way to detect meaningful patterns from an epileptic Electroencephalogram (EEG). Signals used in this work are 23.6 s segments of 100 single channel surface EEG recordings collected with the sampling rate of 173.61 Hz. The recorded signals are from five healthy volunteers with eyes closed and eyes open, and intracranial EEG recordings from five epilepsy patients during the seizure-free interval as well as epileptic seizures. Feature engineering was done using; i) feature extraction of each EEG wave in time, frequency and time-frequency domains via Butterworth filter, Fourier Transform and Wavelet Transform respectively and, ii) feature selection with T-test, and Sequential Forward Floating Selection (SFFS). SVM and KNN learning algorithms were applied to classify preprocessed EEG signal. Performance comparison was based on Accuracy, Sensitivity and Specificity. Our experiments showed that SVM has a slight edge over KNN.
first rewind previous Strona / 14 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.