Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 187

Liczba wyników na stronie
first rewind previous Strona / 10 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  energetic efficiency
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 10 next fast forward last
PL
W artykule przedstawiono wyniki analizy ekonomicznej działań koniecznych do wdrożenia w celu spełnienia wymagań wynikających z aktualizacji programu budownictwa socjalnego i komunalnego (BSK). Wymagania te dotyczą pożądanego standardu energetycznego dla którego wartość wskaźnika rocznego zapotrzebowania na nieodnawialną energię pierwotną EP nie może przekraczać 52 kWh/(m2rok). Przeanalizowano łącznie 25 wariantów technicznych, w tym jeden pierwotnie zaprojektowany, z czego sześć w zakresie architektonicznym, osiem w zakresie instalacji sanitarnych oraz dziesięć w zakresie instalacji pozyskujących energię odnawialną. Najkorzystniejszymi rozwiązaniami ze względu na koszty eksploatacyjne zmienne i stałe są rozwiązania bazujące na wykorzystaniu pomp ciepła typu powietrze-woda oraz pomp ciepłą typu glikol-woda wsparte instalacją fotowoltaiczną o mocy 33,78 kWp pokrywająca całą dostępną powierzchnią dachu w przedmiotowym budynku. Roczne całkowite koszty eksploatacyjne dla tych rozwiązań są niższe od rozwiązania bazowego o odpowiednio 76,80% i 81,57%. Znaczące środki finansowe, które można uzyskać w ramach przedmiotowego programu przy uwzględnieniu dodatkowych środków w postaci uzyskania grantu OZE powoduje, że warianty bazujące na wykorzystaniu rozwiązań alternatywnych finalnie stają się tańsze o ok. 35,0% całkowitych kosztów inwestycyjnych od rozwiązania bazowego. Ta stymulacja powinna ukierunkować decydentów w kierunku podjęcia decyzji o budowie budynków energooszczędnych zgodnie z wytycznymi programu wsparcia.
EN
The article presents the results of the economic analysis of the measures necessary to implement in order to meet the requirements resulting from the update of the social and municipal housing program (BSK). These requirements apply to the desired energy standard for which the value of the annual demand for non-renewable primary energy EP cannot exceed 52 kWh/(m2year). A total of 25 technical variants were analysed, including one originally designed, of which six architectural variants, eight sanitary installations and ten renewable energy installations. The most advantageous solutions in terms of variable and fixed operating costs are solutions based on the use of air-water heat pumps and glycol-water heat pumps supported by a photovoltaic installation with a capacity of 33.78 kWp covering the entire available roof area in the building. The annual total operating costs for these solutions are lower than the base solution by 76.80% and 81.57%, accordingly. Significant financial resources that can be obtained under the program in question, taking into account additional funds in the form of obtaining a RES grant, make the variants based on the use of alternative solutions ultimately cheaper by approx. 35.0% of the total investment costs than the base solution. This stimulation should direct decision-makers towards making decisions on the construction of energy-efficient buildings in accordance with the guidelines of the support programme.
PL
W artykule omówiono zagadnienia dotyczące możliwości ograniczenia strat w rdzeniach transformatorów rozdzielczych.
EN
The article discusses issues related to the possibility of reducing of energy losses in the cores of distribution transformers.
EN
Purpose: The research objective of the work is to quantify the levels of profitability of a photovoltaic installation for a company from the clothing industry. The authors of the article answer the question of where and under what boundary conditions in Poland there is already economic justification for the construction of photovoltaic power plants producing energy for the needs of their own business activity. Design/methodology/approach: The study was conducted using the methods of models of economic measures. These methods allowed the authors to calculate the market value of the investment with the assumed boundary criteria and to determine the economic efficiency of the investment. In addition, the authors made an analysis of the energy consumption of the company's implementation of individual manufacturing processes. The research was carried out in the period 2020-2022 on the example of a real PV installation. Findings: Installing a photovoltaic system in production plants brings many benefits. It should be noted that each kWh produced in a PV installation makes the investor independent of the grid distributor, reduces the consumption of energy from conventional sources, minimizes the emission of pollutants into the atmosphere and favors economic development. In addition, investment in this type of installation allows for obtaining income from the sale of surplus energy produced. Practical implications: The presented models have shown that the project of their implementation is fully economically justified and will allow investors to make a rational investment decision. Originality/value: The contribution of this work is to obtain data that allowed the authors to indicate directions for improvement that may contribute to a more reliable assessment of the profitability of the tested installations. The proposed research can improve the planning of new industrial plants in terms of PV Installations as well as the redesign of existing ones.
PL
Budynki zabytkowe oraz zlokalizowane w obszarze ochrony konserwatorskiej mają duży potencjał obniżenia zużycia energii, ale ze względu na walory architektoniczne znacznie ograniczone możliwości termomodernizacyjne. W artykule przedstawiono wytyczne dla inwestorów oraz pozytywne przykłady budynków wielorodzinnych w wybranych miastach Niemiec, Szwajcarii i Holandii, które, pomimo ograniczeń, zostały kompleksowo zmodernizowane w kierunku standardu możliwie niskoenergetycznego. W budynkach tych, oprócz ociepleń przegród i wymiany stolarki, zastosowano rozwiązania bazujące na OZE, takie jak pompy ciepła, panele fotowoltaiczne i termiczno-fotowoltaiczne, urządzenia mikrokogeneracyjne, systemy wentylacji mechanicznej z odzyskiem ciepła czy wykorzystujące ciepło odpadowe ze spalin jako dolne źródło pompy ciepła. Działania te przyniosły wymierne efekty w postaci obniżenia emisji CO2 nawet o 88%, wskaźnika EK o 81%, a EP o 86%. Uwzględniały one także komfort mieszkańców, tzn. zastosowano rozwiązania generujące niższy poziom hałasu i izolację akustyczną, jednostki umieszczono w miejscach niewidocznych, skorzystano także z możliwości synergii różnych rozwiązań technicznych. Głęboka transformacja sektora budowlanego w Polsce nie jest łatwym zadaniem i wymaga długofalowych i konkretnych działań. Jednak przykłady rozwiązań z sąsiednich krajów pokazują, że jest ona możliwa nawet w budynkach podlegających przepisom konserwatorskim.
EN
Historic buildings, as well as those located in conservation areas, have great potential for reducing energy consumption, but due to their architectural value, they have highly limited opportunities for thermomodernization. The article presents guidelines for investors and positive examples of multifamily buildings in selected cities in Germany, Switzerland and the Netherlands, which, despite their limitations, have been comprehensively modernized to a low-energy standard as possible. In the buildings, in addition to insulating the envelope and replacing the woodwork, RES-based solutions such as heat pumps, photovoltaic and thermal-photovoltaic panels, micro-cogeneration devices, mechanical ventilation systems with heat recovery or using waste heat from exhaust gases as a source of heat pumps were used. Such solutions have brought measurable results in reducing CO2 emissions by up to 88%, EK by 81%, and EP by 86%. In addition to the dimension of energy savings, the described solutions took into account the comfort of residents, i.e. the focus was on solutions that generate lower noise levels, the use of acoustic insulation, the location of units in invisible places or the possibility of synergies between different technical solutions. Deep transformation of the building sector in Poland is not an easy task and requires long-term and concrete actions. However, examples of solutions from neighboring countries show that it is possible even in buildings under the preservation regulations.
PL
W artykule przedstawiono wyniki analizy energetycznej działań koniecznych do wdrożenia dla zaprojektowanego zgodnie z WT 2021 budynku mieszkalnego wielorodzinnego zlokalizowanego w miejscowości Świdnica należącego do Świdnickiego Towarzystwa Budownictwa Społecznego sp. z o.o. w celu spełnienia wymagań wynikających z aktualizacji programu budownictwa socjalnego i komunalnego (BSK). Wymagania te dotyczą pożądanego standardu energetycznego dla którego wartość wskaźnika rocznego zapotrzebowania na nieodnawialną energię pierwotną EP nie może przekraczać 52 kWh/(m2rok). Przeanalizowano łącznie 25 wariantów technicznych, w tym jeden pierwotnie zaprojektowany, z czego sześć w zakresie architektonicznym, osiem w zakresie instalacji sanitarnych oraz dziesięć w zakresie instalacji pozyskujących energię odnawialną. Nie wszystkie z analizowanych wariantów przyczyniły się do redukcji zapotrzebowania na nieodnawialną energię pierwotną. Wyłącznie 8 wariantów z 25 analizowanych pozwoliło uzyskać zadowalający wynik. Najniższą wartość współczynnik EP wynoszącą 13,45 kWh/(m2rok) uzyskano dla wariantu O10 polegającego na zastosowaniu instalacji fotowoltaicznej o mocy 33,78kWp, która pokrywa 100% dostępnej powierzchni dachu dla rozwiązania bazującego na wykorzystaniu jako źródła ciepła pompy ciepła typu glikol-woda z niskoparametrową instalacją centralnego ogrzewania i przepływowym sposobem podgrzewu CWU, a także z instalacją wentylacji mechanicznej wyciągowej higrosterowalnej. Wykazano, że stosowanie odnawialnych źródeł energii (OZE) przyczynia się do zmniejszenia zapotrzebowania na nieodnawialną energię pierwotną.
EN
The article presents the results of the energy analysis of the measures necessary to be implemented for multi-family residential building designed in accordance with WT 2021, located in Świdnica, belonging to Świdnickie Towarzystwo Budownictwa Społecznego sp. z 0.0. in order to meet the requirements resulting from the update ofthe social and municipal housing program (BSK). These requirements apply to the desired energy standard for which the value of the annual demand for non-renewable primary energy EP cannot exceed 52 kWh/(mzyear). A total of 25 technical variants were analysed, including one originally designed, of which six architectural variants, eight sanitary installations and ten renewable energy installations. Not all of the analyzed variants contributed to reducing the demand for non-renewable primary energy. Only 8 variants out of 25 analyzed allowed to obtain a satisfactory result. The lowest value of the EP coefficient of 13.45 kWN(m2year) was obtained for the 010 variant consisting in the use of a photovoltaic installation with a capacity of 33.78 kWp, which covers 100% ofthe available roof area for a solution based on the use of a glycol-water heat pump as a heat source a low-parameter central heating installation and a flow method of DHW heating, as well as a hygro-controlled mechanical exhaust ventilation system. It has been shown that the use of renewable energy sources (RES) contributes to reducing the demand for non-renewable primary energy.
PL
W artykule omówiono zagadnienia dotyczące możliwości ograniczenia strat w blachach transformatorowych i rdzeniach z nich składanych oraz wymagania dla transformatorów rozdzielczych.
EN
The article discusses issues related to the possibility of reducing losses in transformer sheets and cores composed of them, and the requirements for distribution transformers.
PL
Nowe budynki, zgodne z aktualnymi przepisami w zakresie efektywności energetycznej, są predysponowane do osiągania stosunkowo wysokiego stopnia samowystarczalności energetycznej. W UE przygotowywane są regulacje zmierzające do tego, by budynki zużywały jak najwięcej energii odnawialnej wyprodukowanej na miejscu. Umożliwi to osiąganie bardzo niskich kosztów eksploatacyjnych i realizację polityki suwerenności oraz samowystarczalności energetycznej państw, a także wpisuje się w globalne cele zrównoważonego rozwoju.
EN
In electric vehicles, as in hybrids vehicles, a very important factor affecting the energy efficiency of the power-train is the ability to use the regenerative braking energy. Depending on the settings available in electric vehicles, the driver can choose different modes of operation: switch off the regenerative braking mode altogether, select the intensity of regenerative braking, or leave the control system in automatic mode. The last mode is often the only one available on eclectic vehicles, so the driver cannot decide whether to switch off or increase intensity of the regenerative braking. This paper presents a new method for evaluating the energy efficiency of electric vehicle powertrains under urban operating conditions. The presented method uses a procedure for mapping the operating conditions allowing to determine the reference level of energy consumption in relation to those recorded during the identification tests. Identification tests were carried out in the Tri-City area using electric vehicles of different purposes and operating parameters. Performed tests allowed to evaluate the regenerative braking efficiency of tested vehicle, which varies over a relatively wide range, for vehicle A from 33 to 77%, for vehicle B from 27 to 55% and for vehicle C from 36 to 58%. It can be concluded that one of the main factors determining the regenerative braking efficiency is the level of state of charge of the accumulator and the management algorithm used by the vehicle for controlling this parameter.
EN
In electric and hybrid vehicles, it is possible to recover energy from the braking process and reuse it to drive the vehicle using the batteries installed on-board. In the conditions of city traffic, the energy dissipated in the braking process constitutes a very large share of the total resistance to vehicle motion. Efficient use of the energy from the braking process enables a significant reduction of fuel and electricity consumption for hybrid and electric vehicles, respectively. This document presents an original method used to estimate the efficiency of the regenerative braking process for real traffic conditions. In the method, the potential amount of energy available in the braking process was determined on the basis of recorded real traffic conditions of the analysed vehicle. The balance of energy entering and leaving the battery was determined using the on-board electric energy flow recorder. Based on the adopted model of the drive system, the efficiency of the regenerative braking process was determined. The paper presents the results of road tests of three electric vehicles, operated in the same traffic conditions, for whom the regenerative braking efficiency was determined in accordance with the proposed model. During the identi-fication of the operating conditions of the vehicles, a global positioning system (GPS) measuring system supported by the original method of phenomenological signal correction was used to reduce the error of the measured vehicle’s altitude. In the paper, the efficiency of the re-cuperation process was defined as the ratio of the accumulated energy to the energy available from the braking process and determined for the registered route of the tested vehicle. The obtained results allowed to determine the efficiency of the recuperation process for real traffic conditions. They show that the recuperation system efficiency achieves relatively low values for vehicle No. 1, just 21%, while the highest value was achieved for vehicle No. 3, 77%. Distribution of the results can be directly related to the power of electric motors and battery capacities of the analysed vehicles.
PL
W artykule przedstawiono realizację projektu EPKogeneracja dla kompleksu biurowego Energoprojekt-Katowice SA. Głównym celem inwestycji jest zwiększenie udziału produkcji energii w wysokosprawnej kogeneracji. Przy realizacji projektu skorzystano z dofinansowania w ramach Regionalnego Programu Operacyjnego Województwa Śląskiego na lata 2014-2020.
EN
The article presents the implementation of the EPKogeneracja project for the Energoprojekt-Katowice SA office complex. The main goal of the investment is to increase the share of energy production in high-efficiency cogeneration. During the implementation of the project, co-financing was used under the Regional Operational Programme of the Silesia Voivodeship for 2014-2020.
PL
Rosnące koszty oraz braki w dostawach paliw kopalnych wymuszają modernizację instalacji procesowych zasilanych tymi paliwami. Do takich instalacji można zaliczyć systemy wytwarzania podłoża bitumicznego WMA (ang. Warm Mix Asphalt). Wytwarzanie mieszanek asfaltowych wiąże się z zużyciem paliw kopalnych. Paliwa kopalne stosowane są w procesie wytwarzania mieszanki mineralno-asfaltowej (MMA) w instalacji WMA w celu osuszania oraz podtrzymania temperatury już przygotowanej mieszaniny asfaltu oraz kruszywa. Obecnie eksploatowane instalacje WMA bazują na technologiach, które nie są efektywne energetycznie.
PL
W obecnej sytuacji gospodarki krajowej bardzo ważne jest zastosowanie rozwiązań technicznych pozwalających na oszczędność energii elektrycznej. Efektywność energetyczną najprościej jest zdefiniować jako wynik działania obiektu wytwarzającego produkty w postaci towarów, usług, energii (cieplnej lub elektrycznej itp.), trans portu (lub podobne) odniesiony do energii zużytej do tego działania. W niniejszym artykule jako obiekt wytwarzający rozpatrzony będzie elektryczny układ napędowy, a energią zużytą będzie energia elektryczna. [We wzorze] (1) podano, z jakimi wielkościami należy się liczyć, jeśli chodzi o zużycie energii elektrycznej głównie przez układy napędowe. Z tych danych wynika, że ok. 60% wytworzonej w Polsce energii elektrycznej stosowane jest w układach napędowych. W krajach bardziej rozwiniętych wielkość ta wynosi 70%.
PL
Celem artykułu była analiza oceny gotowości budynków do obsługi inteligentnych sieci (SR). Przedstawiono isniejący stan wiedzy, wyniki badań czynników klimatycznych (temperatury, wiatru itp.), analizę dyrektyw i raportów Komisji Europejskiej (w tym domen i usług). Mając to na uwadze oraz obecne zainteresowanie urządzeniami typu smart home, stwierdzono, że ich rozwój stanowi podstawę bieżących potrzeb oraz podstawę budownictwa przyszłości.
EN
The aim of the article was to analyze the building smart readiness (SR). The article presents the current state of knowledge in this field, the results of research on climatic factors (temperature, wind, etc.), the analysis of directives and reports of the European Commission (including domains and services). With this in mind and the current interest in smart home devices, it was found that the development in this area is the basis for the current needs and the basis for the future construction.
PL
Tematem artykułu jest analiza możliwości spełnienia wymagań WT2021 w zakresie wartości wskaźnika EP w zależności od lokalizacji i konstrukcji budynku jednorodzinnego oraz rozwiązań instalacji ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej. W analizie wielkościami zmiennymi były: lokalizacja budynku, wysokość pomieszczeń i poziom przeszklenia w stosunku do powierzchni podłogi, rodzaj wentylacji oraz efektywność urządzeń do ewentualnego odzyskiwania ciepła, rodzaj źródeł ciepła oraz nośników energii wykorzystywanych do ogrzewania i przygotowania ciepłej wody użytkowej oraz sposób wytwarzania energii elektrycznej zasilającej urządzenia pomocnicze. W wyniku analizy określono jak kombinacje wyżej wymienionych parametrów wpływają na wartości wskaźnika EP. W drugiej części artykułu przedstawiono wyniki szeregu dodatkowych obliczeń sprawdzających możliwości obniżenia wskaźnika EP, dzięki zastosowaniu określonych rozwiązań instalacji w poszczególnych konstrukcjach budynku.
EN
The subject of the article is the analysis of the possibility of meeting the requirements of WT2021 in terms of the EP index value depending on the location and structure of a single-family building and solutions for heating, ventilation and domestic hot water. In the analysis, the variable values were: the location of the building, the height of the rooms and the level of glazing in relation to the floor area, the type of ventilation and the efficiency of devices for possible heat recovery, the type of heat sources and energy carriers used for heating and domestic hot water preparation, and the method of generating electricity supplying auxiliary devices. As a result of the analysis, it was determined how the combinations of the above-mentioned parameters affect the values of the EP index. In the second part of the article, apart from the main results of the EP index calculations, the results of a series of additional calculations checking the possibility of reducing the EP index, thanks to the use of specific installation solutions in individual building structures, are presented.
PL
Tematem artykułu jest analiza możliwości spełnienia wymagań WT2021 w zakresie wartości wskaźnika EP w zależności od lokalizacji i konstrukcji budynku jednorodzinnego oraz rozwiązań instalacji ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej. W analizie wielkościami zmiennymi były: lokalizacja budynku, wysokość pomieszczeń i poziom przeszklenia w stosunku do powierzchni podłogi, rodzaj wentylacji oraz efektywność urządzeń do ewentualnego odzyskiwania ciepła, rodzaj źródeł ciepła oraz nośników energii wykorzystywanych do ogrzewania i przygotowania ciepłej wody użytkowej oraz sposób wytwarzania energii elektrycznej zasilającej urządzenia pomocnicze. W wyniku analizy określono jak kombinacje wyżej wymienionych parametrów wpływają na wartości wskaźnika EP. W drugiej części artykułu przedstawiono wyniki szeregu dodatkowych obliczeń sprawdzających możliwości obniżenia wskaźnika EP, dzięki zastosowaniu określonych rozwiązań instalacji w poszczególnych konstrukcjach budynku.
EN
The subject of the article is the analysis of the possibility of meeting the requirements of WT2021 in terms of the EP index value depending on the location and structure of a single-family building and solutions for heating, ventilation and domestic hot water. In the analysis, the variable values were: the location of the building, the height of the rooms and the level of glazing in relation to the floor area, the type of ventilation and the efficiency of devices for possible heat recovery, the type of heat sources and energy carriers used for heating and domestic hot water preparation, and the method of generating electricity supplying auxiliary devices. As a result of the analysis, it was determined how the combinations of the above-mentioned parameters affect the values of the EP index. In the second part of the article, apart from the main results of the EP index calculations, the results of a series of additional calculations checking the possibility of reducing the EP index, thanks to the use of specific installation solutions in individual building structures, are presented.
PL
Nowelizacja ustawy z dnia 20 maja 2016 r. o efektywności energetycznej1), wprowadziła nowy (poza umarzaniem świadectw efektywności energetycznej, realizacją u odbiorcy końcowego przedsięwzięć mających na celu ograniczenie zużycia energii finalnej oraz – warunkowo – uiszczaniem opłaty zastępczej) wariant realizacji przez podmioty zobowiązane obowiązku, o którym mowa w art. 10 ust. 1.
PL
Zaostrzone od 31 grudnia 2020 r. przepisy Prawa budowlanego stawiają przed architektami i projektantami nowe wyzwania. W artykule przedstawiono, jaki wpływ na spełnienie wymagań w zakresie wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP będzie miał wybór źródła ciepła w budynku. Analizę przeprowadzono dla budynku mieszkalnego wielorodzinnego przy założeniu pięciu indywidualnych źródeł ciepła oraz przyłącza do sieci ciepłowniczej o dziewięciu różnych współczynnikach nakładu nieodnawialnej energii pierwotnej. Dodatkowo w wariantach tych uwzględniono odnawialne źródła energii w postaci instalacji fotowoltaicznej oraz cieczowych kolektorów słonecznych. Pokazano, że współczynnik nakładu nieodnawialnej energii pierwotnej wi w znacznym stopniu determinuje wartość wskaźnika EP i nawet zastosowanie dodatkowego odnawialnego źródła energii nie zawsze pozwala na osiągnięcie jego odpowiedniej wartości.
EN
The construction law provisions, tightened as of December 31, 2020, pose new challenges for architects and designers. This article presents the impact of the choice of heat source on meeting the EP index requirements. The analysis was performed for a multi-family residential building, assuming five individual heat sources and a connection to the heating network with nine different coefficients of non-renewable primary energy factor (PEF). Additionally, the variants include additional renewable energy sources: a photovoltaic installation and liquid solar collectors. It has been shown that the PEF coefficient largely determines the value of the EP index and even the use of an additional renewable energy source does not always allow to achieve its appropriate value.
PL
W artykule przedstawiono analizę możliwości spełnienia wymagań dotyczących nieprzekroczenia granicznej wartości wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP zgodnie z WT 2021 przez analizowany budynek wielorodzinny zlokalizowany w III strefie klimatycznej, przy zastosowaniu różnej izolacyjności przegród zewnętrznych i różnych systemów wentylacji budynku. Zaostrzone od 31 grudnia 2020 r. wymagania w zakresie dopuszczalnej wartości wskaźnika zapotrzebowania na nieodnawialną energię pierwotną EP wymagają od projektantów analizy różnych rozwiązań technicznych i technologicznych. Udowodniono że spełnienie wymagań WT 2021 w budynkach wielorodzinnych jest możliwe przy zastosowaniu dostępnych rozwiązań materiałowych i technicznych. Zastosowanie lepszej izolacyjności cieplnej nie spowoduje jednak znaczącego obniżenia wskaźnika EP budynku. Kwestią istotniejszą jest analiza możliwych do zastosowania systemów wentylacji z uwzględnieniem urządzeń pomocniczych.
EN
The article presents an analysis of the possibility of meeting the requirements of the non-renewable primary energy demand indicator EP according to WT 2021 by the analyzed multi-family building located in zone III climate with the use of different insulation properties of external partitions and different building ventilation systems. The tightened from 31 December 2020 requirements of the for non-renewable primary energy demand indicator EP require designers to analyze various technical and technological solutions. The use of better thermal insulation will not result a significant reduction in the building EP indicator. The more important issue is the analysis of possible ventilation systems used in the building, and its auxiliary devices.
PL
W lutym 2021 r., w dwunastym roku po uchwaleniu poprzedniej polityki energetycznej, Rząd przyjął nową Politykę energetyczną do 2040 r. [PEP 2040]. Przedstawił w niej cele polskiej polityki energetycznej na tle celów UE, zwłaszcza w obszarach redukcji emisji gazów cieplarnianych, produkcji energii odnawialnej i efektywności energetycznej, które stanowić mają wkład w realizację celów unijnych, a które odbiegają in minus od ambicji europejskiej polityki klimatyczno-energetycznej. Polityka zakłada powolne zmniejszanie procentowe wykorzystania paliw kopalnych do produkcji energii elektrycznej (nie więcej niż 56% energii z węgla w 2030 r. i nie mniej 11% w 2040 r. - w scenariuszu wysokich cen CO2).
PL
Niskotemperaturowe sieci ciepłownicze (NSC) to sieci ciepłownicze (SC) tzw. 4 Generacji, charakteryzujące się niską temperaturą zasilania (poniżej 70°C) w celu zwiększenia sprawności systemu i ograniczenia wykorzystania paliw kopalnych. Wśród dodatkowych korzyści należy wymienić łatwiejszą integrację niskotemperaturowych odnawialnych źródeł energii (OZE), w tym m. in. Kolektorów słonecznych, źródeł geotermalnych i poprocesowego ciepła odpadowego, redukcję naprężeń termicznych w rurociągach (przez to wydłużenie ich życia) oraz możliwość wykorzystania ciepła z gałęzi powrotnej SC (powodując obniżenie temperatury powrotnej i umożliwiając istotne podwyższenie sprawności układów kogenerecyjnych).
first rewind previous Strona / 10 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.