Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  czujnik kwantowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Postępy w funkcjonalizacji zjawisk kwantowych, co ujęto w dyscyplinę określaną jako informacyjne techniki kwantowe ITK, stanowią istotny element rozwoju zupełnie odmiennych dyscyplin, w tym biofotoniki kwantowej. Jednym z ważnych technik badawczych w biologii jest wykrywanie słabego światła używanego w systemowych badaniach biologicznych, testach biologicznych, bioprodukcji, a także w diagnostyce medycznej. Opanowanie technik generacji na żądanie, a szczególnie detekcji pojedynczych fotonów, w połączeniu z kwantowo-optycznymi metodami przetwarzania danych otwarło fundamentalnie nowe fotoniczne możliwości metrologiczne związane z obserwacją warunków zjawisk bio-optycznych w pojedynczej molekule. W tym właśnie obszarze ultra-precyzyjnych optycznych pomiarów pojedynczej molekuły została przyznana Nagroda Nobla z Chemii w roku 2014 - super-rozdzielcza mikroskopia fluorescencyjna. Od tego czasu badania i zastosowania w obszarze biofotoniki kwantowej znacznie rozszerzyły się, obejmując wiele technik mikroskopowych, tomograficznych, obrazowania, ultra-czułej detekcji biochemicznej, ultra-precyzyjnej fotonicznej manipulacji molekularnej. Biofotonika kwantowa rozwija się dynamicznie jako wspólny obszar biologii kwantowej i optyki kwantowej. Poprzez wyposażenie instrumentalne, pomiarowe i aplikacyjno-funkcjonalizujące, biofotonika kwantowa jest ściśle związana z takimi dyscyplinami jak inżynieria biomedyczna, fizyka biomedyczna, biochemia, metrologia optyczna i elektroniczna oraz ICT.
EN
Advances in the functionalization of quantum phenomena, which are now included in the discipline known as quantum information techniques, constitute an important element in the development of completely different disciplines, including quantum biophotonics. One of the important research techniques in biology is the detection of low light used in system biological research, bioassays, bioproduction as well as in medical diagnostics. Mastering the techniques of generation on demand, and especially the detection of single photons, combined with quantum-optical methods of data processing, opened fundamentally new photonic metrological possibilities related to the observation of the conditions of bio-optical phenomena in a single molecule. It was in this area of ultra-precise optical measurements of a single molecule that the Nobel Prize in Chemistry in 2014) super-resolved fluorescence microscopy) was awarded. Since then, research and applications in the field of quantum biophotonics have significantly expanded to include many techniques of microscopy, tomography, imaging, ultra-sensitive biochemical detection, and ultra-precise photonic molecular manipulation. Quantum biophotonics is developing dynamically as a common area of quantum biology and quantum optics. Through instrumental, measuring and application-functionalizing equipment, quantum biophotonics is closely related to biomedical engineering, bio- medical physics, biochemistry, optical and electronic metrology, and ICT.
PL
Informacja kwantowa, której jednostką elementarną jest kubit, jest zawarta w skwantowanym, dyskretnym stanie układu kwantowego. Od informacji klasycznej odróżnia ją charakter probabilistyczny oraz możliwość zakodowania w nielokalnych związkach pomiędzy układami kwantowymi. Kwantowe związki nielokalne, będące powszechną właściwością wszechświata, nazywamy stanami splątanymi. Układ kwantowy jest obiektem podlegającym mechanice kwantowej i jest ograniczony rozmiarowo do skali atomowej. Kubit jest dowolną superpozycją dwóch stanów kwantowych oznaczanych jako |0> i |1>. Odczytując wartość kubitu uzyskuje się z pewnym prawdopodobieństwem wartość 0 lub 1. Nie można przewidzieć która wartość zostanie odczytana. Stan układu kwantowego jest nietrwały, ograniczony przez czas dekoherencji. Czas ten, zdeterminowany szumem i właściwościami układu odczytu, ogranicza skalowalność technologii kwantowych. Kubitem są np. elektron i jego dwuwartościowy spin, foton i jego dwuwartościowy stan polaryzacji, jon z odpowiednio wybranymi dwoma poziomami energetycznymi, ale też molekuły posiadające spin, oscylatory kwantowe czy kwazicząstki. Rejestr kwantowy jest uporządkowanym układem kubitów. Z kubitów i ich układów buduje się logiczne bramki kwantowe. Z kubitów, bramek kwantowych i układów kontrolno- sterujących buduje się systemy kwantowe: komputery, zegary, czujniki, systemy pomiarowe, urządzenia, grawimetry, akcelerometry i wiele innych. Do kontroli kubitów potrzeba jest zaawansowana fotonika, ultrastabilne przestrajalne lasery jednoczęstotliwościowe oraz zaawansowana, najlepiej standaryzowana elektronika.
EN
Quantum information, the unit of which is a qubit, is contained in a quantized, discrete state of a quantum system. What distinguishes it from classical information is its probabilistic nature and the possibility of coding it in non-local relationships between quantum systems. Quantum nonlocal relationships, a common feature of the universe, are called entangled states. A quantum system is an object subject to quantum mechanics and is limited in size to the atomic scale. A qubit is an arbitrary superposition of two quantum states marked as |0> and |1>. When you read the value of a qubit, you get a value of 0 or 1 with some probability. You cannot predict which value will be read. The state of the quantum system is unstable, limited by the time of decoherence. This time, determined by noise and properties of the readout system, limits the scalability of quantum technologies. The qubit is an electron and its bivalent spin, a photon and its bivalent polarization state, an ion with two suitably selected energy levels, but also molecules with spin, quantum oscillators or quasiparticles. A quantum register is an ordered system of qubits. Logical quantum gates are built from qubits and their systems. Quantum systems are built from qubits, quantum gates and measurement and control systems: computers, clocks, sensors, measuring systems, devices, gravimeters, accelerometers, and many others. To control qubits, you need advanced photonics, ultra-stable tuneable single-frequency lasers, and advanced, preferably standardized electronics.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.