The aim of this article is to present the results of an analysis and an evaluation of the operational security status in relation to the most important hazards in Węgrów County, as assessed by units of the National Firefighting and Rescue System (NFRS) on the county area. The study was conducted in 2024 in the Węgrów County, specifically in the town of Węgrów. The article examines the operational security status of the Węgrów County to verify the hypothesis formulated as follows: the implementation of additional organizational solutions among NFRS units in the Węgrów County will enhance the level of operational security against the most significant hazards in the area. As part of the research, the capacity of NFRS entities operating in the Węgrów County was evaluated, hazards occurring on the county area were assessed and relevant assumptions were made. The major threats in the Węgrów County were identified and the operational protection capabilities of NFRS units in the county were simulated for these threats using the QGIS software. The results obtained confirmed that the research hypothesis was supported by the assessment.
A number of different types of information are generally associated with places. It is estimated that about 75-90 % of information may contain an official link to a specific area, expressed as, for example, coordinates, or addresses, and therefore has a spatial character, making data collection a responsible and important stage, which reasonably affects the quality of its results. Information and its sources are treated with particular care and rigor in the scientific field: in most cases, the data must be relevant, reliable, technically simple, and collected quickly at reasonable costs. The analysis of geographic information makes it possible to obtain qualitatively new information and reveal previously unknown patterns. Modern data collection methods are divided into three distinct groups: terrestrial, cartographic, and remote. Remote or aerospace methods are considered to be those that allow information to be collected. It refers to objects on the Earth's surface, phenomena, or processes from space or the atmosphere, recorded by detecting electromagnetic radiation on the ground across various spectral ranges. The involvement of various platforms (providers) of surveillance equipment makes it possible to divide them into: space, aerial photography, and images from Unmanned Aerial Vehicles (UAVs). As a technology justified on security grounds, UAVs show great promise in many areas of application. Effective planning of drone missions allows for the collection of larger sets of data with a higher level of detail and in a shorter period of time. The continuity of information collection for a given territory allows for the most accurate and reliable three-dimensional modelling, spatial analysis and geostatistics of the local situation.
The pandemic situation from years 2020-2023forced the search for ways to perform remote analyses of the chemical composition of minerals using an electron microprobe (EPMA) and mass spectrometry (LA-ICP-MS). As a consequence of these circumstances, a new method for determining the coordinates of the so-called "benchmark points” in microscopic thin sections using ArcGIS software was developed. The solution used enabled more accurate planning of future analyses, faster location of analytical points and the collection of all information in the form of a coherent database.
The built-up index was developed to "mapping" built-up areas using publicly available satellite images. However, its biggest problem is not distinguishing between built-up areas and bare soils. This distinction is fundamental to automatic mapping. Therefore, numerous approaches to delimitation appear in the literature, proposing different solutions to eliminate errors during the automatic process. The study aimed to select the most appropriate built-up index for automatic delimitation of areas related to the Upper Silesian Conurbation. Preliminary work was based on a literature review of the use of various built-up indexes. In the next step, the most useful indicators in the context of automatic delimitation of these areas were selected. In this work, comparative analyses of the built-up indexes proposed in the literature were carried out on the example of the city of Gliwice so that their usefulness and adequacy for the delimitation of built-up areas in the Upper Silesian conurbation could be determined. Analyses were carried out using open spatial data and using GIS tools such as ArcGIS and SAGA. Indicators were calculated using selected Landsat 7 and Landsat 8 satellite images. From the indicators selected, the MBUI appear to be the most useful, besides the basic one i.e., widely used in development de-limitation calculations, NDBI. However, each of these indicators has weaknesses that cause the automatic delimitation process generate some errors. There should therefore be further research in this area.
The purpose of the study was to apply GIS to analyze sand availability in selecting the location of a dry mix plant. Geospatial analysis showed that only 18% of the country’s area met the minimum assumed location criteria. This proves that the sand availability factor can be important in site selection together with other factors, i.e.: availability of transportation infrastructure, demand for final products, competitive analysis, as well as land use, regulatory and environmental aspects.
PL
Artykuł dotyczy zastosowania GIS do analizy dostępności piasku przy wyborze lokalizacji zakładu produkcji suchych mieszanek. Analiza geoprzestrzenna wykazała, że tylko 18% powierzchni kraju spełnia minimalne założone kryteria lokalizacyjne. Dowodzi to, że czynnik dostępności piasku może mieć istotne znaczenie w doborze lokalizacji wspólnie z innymi czynnikami, tj. dostępność infrastruktury transportowej, popyt na produkty końcowe, analiza konkurencji, a także aspekty związane z zagospodarowaniem przestrzennym, regulacjami prawnymi oraz ochroną środowiska.
The spatiotemporal variation of vegetation cover in the mining areas of YSR Kadapa district, Andhra Pradesh, using Remote Sensing and GIS techniques. By focusing on the years 2014, 2018, and 2023, the analysis provides insights into changes observed in water bodies, bare soil, sparse vegetation, moderate vegetation, and dense vegetation. The results reveal dynamic trends in land cover categories, highlighting the environmental impact of mining activities in the region. A significant decline in water bodies is observed, with the area reducing from 3.48 km2 in 2014 to 1.91km2 in 2023. This decrease raises concerns about the potential degradation of aquatic ecosystems, reflecting the ecological consequences of mining operations. The fluctuating pattern in bare soil areas, increasing from 37.64 km2 in 2014 to 40.37 km2 in 2018 and subsequently decreasing to 34.65 km2 in 2023, indicates the complex nature of land use changes and reclamation efforts in the mining regions. The study highlights a significant decrease in sparse vegetation from 6.88 km2 in 2014 to 4.43 km2 in 2018, followed by a substantial increase to 13.49 km2 in 2023. This suggests the resilience of vegetation in certain areas or potential reforestation initiatives. A consistent decline in moderate vegetation is observed, with the area decreasing from 5.72 km2 in 2014 to 4.25 km2 in 2023, indicating the lasting impacts of mining on plant health and ecosystem stability. Fluctuations in dense vegetation areas are noted, with a decrease from 2.31 km2 in 2014 to 1.72 km2 in 2023. This decline may signify habitat disruption and environmental stress resulting from mining operations. The consequences of these spatiotemporal changes in vegetation cover extend beyond the immediate landscape, impacting the ecosystem and environment. The reduction in water bodies and vegetation, coupled with an increase in bare soil, suggests potential biodiversity loss, soil erosion, and altered hydrological patterns. These changes pose significant challenges, affecting local fauna and flora and contributing to broader ecological imbalances. The study emphasizes the importance of employing sustainable mining practices to mitigate these adverse effects, ensuring the long-term environmental health and resilience of the region. Sustainable practices could include measures to protect and restore water bodies, prevent soil erosion, and promote reforestation and habitat conservation. By adopting such practices, the mining industry can help preserve biodiversity, maintain ecosystem services, and support the overall environmental sustainability of the YSR Kadapa district.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Maintaining food security through increased agricultural production is a major concern for decision-makers, especially in areas with arid and semi-arid climatic conditions and limited natural resources. Land suitability prediction for cultivating strategic crops, including wheat, has emerged as a crucial subject for academics, decision-makers, and economists to ensure the sustainability of natural resources. This paper aims to use three soil morphological parameters, three soil physical parameters, four soil chemical parameters, and a long-term remote sensing index as input factors to produce land suitability maps for wheat cultivation based on five machine learning algorithms (MLAs): ANN, KNN, RF, SVM, and XgbTree, in the Gozlu agricultural enterprise, which is located in a semi-arid region of the Central Anatolian Plateau. To achieve this target, an inventory of 238 appropriateness points for cultivated wheat has been executed over five years, from 2019 to 2023. The outcomes revealed that the soil texture and soli available water capacity parameters were the most influential in land suitability prediction. The best performance among the MLAs was achieved by the XgbTree algorithm, which had an accuracy of 0.98 and a kappa coefficient of 0.81. Additionally, the area under the curve (AUC) was 0.90 according the receiver operating characteristics (ROC) curve approach. The results of the study demonstrated an excellent ability of the MLAs to predict land suitability for wheat cultivation in semi-arid climate conditions. This approach can play a significant role in ensuring food security and serves as an important tool for decision-makers in sustainable development. However, we propose that the approach should be examined in comparable climatic conditions with diverse crops to ensure it is a viable solution with widely cases.
In the optimization process aimed at identifying the most effective solution while accounting for all existing constraints, the objective is to determine the optimal variant from a set of admissible alternatives. In the field of spatial management, the term "optimization" is employed to assess the most efficient - optimal - allocation and utilization of land. This assessment primarily pertains to the spatial distribution of economic entities and is frequently applied to urban areas and their surroundings. Moreover, it serves to coordinate human activities while safeguarding ecological structures and natural resources to achieve sustainable development. This article presents a procedure for urban space optimization, which could be incorporated into the process of modifying land-use functions. The primary objective of the analysis is to determine a new, optimal land-use function by considering key social, economic, and environmental criteria that significantly influence urban space utilization. Additionally, the study introduces the concept of optimizing spatial processes, the methodology for identifying optimal land-use states, and the potential application of optimization methods, which are regarded as decision-support tools in spatial planning and management. Particular emphasis is placed on the use of Geographic Information System (GIS) tools as analytical instruments facilitating the optimization of spatial structures.
Food security is increasingly challenged by environmental changes, natural resource degradation, and population growth. Crop yields have already stagnated in many regions and are further affected by rising temperatures. The growing global population imposes a direct demand on agriculture to produce food, fiber, and fodder, necessitating the consumption of vast amounts of water. To maximize agricultural productivity and ensure sustainable crop yields, continuous crop monitoring is essential. Remote sensing has emerged as a powerful technology for vegetation monitoring, enabling spectral analysis of high-resolution satellite imagery to assess crop health and development. This study utilizes remote sensing techniques in conjunction with Geographic Information Systems (GIS) to monitor crop conditions. The Green Chromatic Coordinate (GCC) and Normalized Difference Vegetation Index (NDVI) were estimated using Landsat-9 satellite imagery. The analysis was conducted using QGIS for Tavra Village Farm, near Parul University, Waghodia, Vadodara, Gujarat, India. The observed GCC values ranged from 0.9352 to 0.3297, while NDVI values varied between 0.3300 and 0.0398 over the temporal period. The trend analysis of GCC and NDVI indicated an initial increase from November (early crop growth stage) to January (mid-growth stage), followed by a decline by February (crop maturity stage). These findings demonstrate the effectiveness of remote sensing and GIS in monitoring crop growth patterns, offering valuable insights for precision agriculture and resource management.
In the era of increasing digitization and dependence on information technologies, cybersecurity is becoming a key element of critical infrastructure management. Geographic Information Systems (GIS) play a vital role in monitoring, analyzing, and managing infrastructure assets. This paper explores the integration of national cybersecurity standards with GIS systems, focusing on critical infrastructure security management. A literature review and case studies of cybersecurity standards implementation in GIS systems allow for the identification of the main challenges and requirements. The article also presents methods of risk assessment and incident management in the context of GIS. The results of the research indicate the need for close cooperation between cybersecurity professionals and GIS users to ensure comprehensive protection of critical infrastructure. The article concludes with practical conclusions and proposals for future research directions in the area of integration of cybersecurity standards with GIS systems.
The study aimed to identify the optimal kindergarten site in As-Salt using Geographic Information Systems (GIS). Data was collected from various sources and experts, and three alternatives were selected from Batna neighborhood, Wadi Al-Halabi neighborhood, and Al-Naqab neighborhood. The spatial suitability method was used to analyze the data, determining the most suitable neighborhood for kindergartens. The study adopted a descriptive approach and analyzed the data using GIS to ensure the optimal site selection. The study found that the Batna neighborhood is the optimal site for establishing a kindergarten project, ranking eighth in the classifications . The most important criteria for site selection were distance from main roads and proximity to residential roads, which ranked up to 18%. The study also highlighted the effectiveness of GIS and the spatial suitability method in achieving optimal site selection for educational facility projects. The study recommends selecting Batna neighborhood for kindergartens due to its high suitability for most proposed criteria and suggests enhancing GIS technology in other educational projects. Future studies should evaluate and improve the process of selecting kindergarten sites using GIS and the spatial suitability method.
This paper presents an in-depth analysis of solid waste management in Tripoli, Lebanon, using the SWEPT model a suitability model incorporating multiple criteria to assess potential sites for recycling and waste management initiatives. The SWEPT model considers socio-economic factors, waste characteristics, environmental pollution, and topographical conditions, assigning each location a suitability score that ranges from unsuitable to very high suitability. The model allows for a comprehensive evaluation of potential sites for recycling and waste management infrastructure in Tripoli, taking into account the complex urban and socio-economic conditions that affect the city's waste management system. The model's validation is achieved through a matrix analysis, which compares the suitability of the selected sites for recycling with existing waste collection points. This approach ensures that the chosen sites are both strategically located and viable for implementation. By integrating GIS technology and spatial analysis, the study provides a clear visualization of the relationships between various urban planning challenges and waste management issues in Tripoli. Through these analyses, the paper offers evidence¬based recommendations for improving waste management practices, enhancing the city's infrastructure, and addressing broader environmental concerns.
The aim of the article is to investigate the application of the Digital Operational Resilience Act (DORA) standards in operational risk management in GIS (Geographic Information Systems). The study focuses on identifying the benefits and challenges of integrating these standards and assessing their impact on the operational resilience of financial institutions. A literature review shows the growing importance of DORA standards in digital risk management and the benefits of implementing them in GIS systems. Examples of DORA implementations in sectors such as banking and ICT services show that the integration of these standards can improve operational risk management and resilience to digital threats. The results of the research point to numerous benefits, such as increased resilience to cyber threats and better risk management. Recommendations include investments in technology, employee training, and cooperation with ICT service providers.
This research analyzes traffic accidents in the mountainous area of the Aurès range from 2017 to 2022, focusing on their spatial and temporal distribution and main causes using geographic information systems and exploratory factor analysis, given their significant social and economic impacts. Initially, we conducted a quantitative analysis of traffic accidents recorded by the relevant authorities, examining their distribution and their relationship with the ongoing dynamics of the national, provincial, and municipal road networks. In addition to that, we addressed the causes of traffic accidents through exploratory factor analysis of accidents in the area. The study’s results showed that the road network in the Aurès region witnessed a total of 930 traffic accidents between 2017 and 2022, which is an average of 1 accident every two days, or 6 accidents per 1,000 people. There is a direct relationship between traffic density and the rank and importance of the road, as national roads accounted for 58.27% of all accidents, provincial roads for 30.53%, and municipal roads for 11.18%. The study also confirmed that the main factors causing traffic accidents are primarily the driver, contributing 24.85% of the variance, followed by weather conditions at 18.64%, the road itself at 12.02%, and vehicle defects at 9.01%. These results confirmed the seriousness of this phenomenon and its negative social and economic impacts, which led us to present a set of suggestions to mitigate it.
PL
W niniejszym badaniu analizuje się wypadki drogowe w górzystym obszarze pasma Aurès w latach 2017–2022, skupiając się na ich rozkładzie przestrzennym i czasowym oraz głównych przyczynach, wykorzystując systemy informacji geograficznej i eksploracyjną analizę czynnikową, biorąc pod uwagę ich znaczący wpływ społeczny i ekonomiczny. Początkowo przeprowadziliśmy analizę ilościową wypadków drogowych zarejestrowanych przez właściwe organy, badając ich rozmieszczenie i ich związek z bieżącą dynamiką sieci dróg krajowych, wojewódzkich i gminnych. Ponadto zajęliśmy się przyczynami wypadków drogowych poprzez eksploracyjną analizę czynnikową wypadków na tym obszarze. Wyniki badania wykazały, że w sieci drogowej w regionie Aurès doszło łącznie do 930 wypadków drogowych w latach 2017–2022, co daje średnio 1 wypadek co dwa dni lub 6 wypadków na 1000 osób. Istnieje bezpośredni związek pomiędzy natężeniem ruchu a rangą i znaczeniem drogi, ponieważ drogi krajowe odpowiadają za 58,27% wszystkich wypadków, drogi wojewódzkie za 30,53%, a drogi gminne za 11,18%. Badanie potwierdziło również, że głównymi czynnikami powodującymi wypadki drogowe są przede wszystkim kierowcy, którzy odpowiadają za 24,85% wariancji, następnie warunki pogodowe (18,64%), sama droga (12,02%) i wady pojazdów (9,01%). Wyniki te potwierdziły powagę tego zjawiska i jego negatywne skutki społeczne i ekonomiczne, co skłoniło nas do przedstawienia zestawu sugestii mających na celu jego złagodzenie.
Soil organic carbon, clay content and cation exchange capacity play a key role in the productivity of agricultural soils, and are therefore fundamental parameters for environmental monitoring and modelling. However, studying these properties using traditional laboratory methods is labour-intensive and costly. An equally important factor is the steepness of slopes, which affects erosion processes and nutrient distribution in the soil. Geospatial analysis is a powerful tool for examining spatial patterns and the distribution of various indicators. When assessing soil quality indicators, GIS technologies enable the accurate and detailed monitoring of soil conditions in various areas, the assessment of their characteristics, and the identification of potential problem areas. This study presents observation and analysis of the impact of soil quality indicators, including soil organic carbon (SOC), physical clay, and cation exchange capacity (CEC), on the development of soil quality degradation using SoilGrids 250 m 2.0 data. To estimate the level of erosion, a slope steepness map was generated using the SRTM digital elevation model, which was downloaded through Google Earth Engine at a 30-m resolution. The results showed that high organic carbon content and optimal CEC values reduce soil vulnerability to the development of erosion, while steep slopes and low organic carbon content increase the risk of degradation. The vulnerability index developed based on these data allows us to effectively identify areas at high risk of soil degradation and develop protection strategies.
PL
Zawartość węgla organicznego w glebie, iłu fizycznego i pojemności wymiany kationów odgrywają kluczową rolę w produktywności gleb rolniczych, a zatem stanowią podstawowe parametry monitorowania i modelowania środowiska. Badanie tych właściwości tradycyjnymi metodami laboratoryjnymi jest jednak pracochłonne i kosztowne. Równie ważnym czynnikiem jest nachylenie zboczy, które wpływa na procesy erozji i dystrybucję składników odżywczych w glebie. Analiza geoprzestrzenna jest potężnym narzędziem do badania wzorców przestrzennych i rozmieszczenia różnych wskaźników. Przy ocenie wskaźników jakości gleby technologie GIS umożliwiają dokładny i szczegółowy monitoring warunków glebowych na różnych obszarach, ocenę ich charakterystyki oraz identyfikację potencjalnych obszarów problemowych. W niniejszym opracowaniu przedstawiono obserwację i analizę wpływu wskaźników jakości gleby, w tym węgla organicznego w glebie (SOC), iłu fizycznego i pojemności wymiany kationów (CEC), na rozwój degradacji jakości gleby z wykorzystaniem danych SoilGrids 250 m2.0. Aby oszacować poziom erozji, wygenerowano mapę nachylenia zboczy przy użyciu cyfrowego modelu terenu SRTM, który został pobrany za pomocą Google Earth Engine z rozdzielczością 30 m. Wyniki pokazały, że wysoka zawartość węgla organicznego i optymalne wartości CEC zmniejszają podatność gleby na rozwój erozji, natomiast strome zbocza i niska zawartość węgla organicznego zwiększają ryzyko degradacji. Wskaźnik podatności opracowany na podstawie tych danych pozwala nam skutecznie identyfikować obszary wysokiego ryzyka degradacji gleby i opracowywać strategie ochrony.
The aim of this study is to combine the hydrochemical data, geostatistical methods, and numerical approaches with the water pollution vulnerability index of the Mitidja alluvium. This index is obtained by applying the DRASTIC model and a numerical rating system to develop a methodology based on the water sensitivity index. The socio-economic development has led to the overexploitation of groundwater and surface water resources, coupled with insufficient rainfall, which has exacerbated the sensitivity and vulnerability of this precious resource. Compared to previous studies, the most recent sensitivity map serves as an important decision support tool for relevant authorities. According to the survey, this index was very low, accounting for 45.43% of the total drinking water area in 2010. It decreased to 8.25% and later increased to 28.06% in 2018. The high and very high sensitivity index to water pollution (SI) accounted for 5.34% and 9.87% in 2010, and 19.77% and 15.78% in 2018. The variation in irrigation water sensitivity was similar that of drinking water sources (DWS). The medium and high sensitivity indices (SI) increased from 27.21% and 18.20% to 37.19% and 42.01%, reflecting a significant and alarming increase in groundwater sensitivity, vulnerability, and pollution within the study area. The results of the geostatistical approach yielded some interesting results, considering the water intended for drinking water supply and the water intended for irrigation separately in the Mitidja alluvial aquifer.
PL
Celem tego badania jest połączenie danych hydrochemicznych, metod geostatystycznych i podejść numerycznych ze wskaźnikiem podatności na zanieczyszczenie wody aluwium Mitidja. Wskaźnik ten uzyskano poprzez zastosowanie modelu DRASTIC i numerycznego systemu oceny w celu opracowania metodologii opartej na wskaźniku wrażliwości wody. Rozwój społeczno-gospodarczy doprowadził do nadmiernej eksploatacji zasobów wód gruntowych i powierzchniowych, w połączeniu z niewystarczającymi opadami deszczu, co zaostrzyło wrażliwość i podatność tego cennego zasobu. W porównaniu z poprzednimi badaniami najnowsza mapa wrażliwości służy jako ważne narzędzie wspomagające podejmowanie decyzji dla odpowiednich organów. Według badania wskaźnik ten był bardzo niski i stanowił 45,43% całkowitej powierzchni wody pitnej w 2010 r. Zmniejszył się do 8,25%, a następnie wzrósł do 28,06% w 2018 r. Wysoki i bardzo wysoki wskaźnik wrażliwości na zanieczyszczenie wody (SI) stanowił 5,34% i 9,87% w 2010 r. oraz 19,77% i 15,78% w 2018 r. Zmienność wrażliwości wody nawadniającej była podobna do zmienności źródeł wody pitnej (DWS). Średnie i wysokie wskaźniki wrażliwości (SI) wzrosły z 27,21% i 18,20% do 37,19% i 42,01%, co odzwierciedla znaczny i alarmujący wzrost wrażliwości, podatności i zanieczyszczenia wód gruntowych na badanym obszarze. Wyniki podejścia geostatystycznego przyniosły interesujące rezultaty, biorąc pod uwagę osobno wodę przeznaczoną do zaopatrzenia w wodę pitną i wodę przeznaczoną do nawadniania w warstwie wodonośnej aluwialnej Mitidja.
Floods are among the most hazardous natural disasters, which pose significant threats to human lifeat both global and national scales due to severe human, material, and environmental losses. The increasing frequency of floods, compared to other natural hazards, highlights the urgent need of their evaluation and the mitigation of their impacts. This study aimed to assess and map flood-prone areas in the city of Sidi Aissa, Algeria, using the analytical hierarchy process (AHP) and geographic information systems (GIS). The city was chosen because of the three rivers running through it. A model combining a multi-criteria statistical approach and GIS was employed. The study focused on analyzing the factors influencing flood occurrence, including land use, elevation, slope, drainage density, distance from river and roads, topographic wetness index (T.W.I), and normalized difference vegetation index (N.D.V.I), To calculate the weights of these factors in the GIS environment, the AHP method was applied, resulting in maps specific to each criterion. The results revealed that land use (21.7%) and distance from river (18.2%) are the most critical factors influencing flood susceptibility and damage to nearby buildings. The study shaped a flood susceptibility map divided into three categories: areas with very low flood susceptibility, accounting for 29% of the total area; areas with moderate flood susceptibility, accounting for 40% and areas highly susceptible to flooding, making up 31%. Furthermore, the study demonstrated the effectiveness of using AHP and GIS in simulating potential floods and identifying flood-prone areas, thereby highlighting their importance in planning and mitigating flood risks in the future.
PL
Powodzie należą do najniebezpieczniejszych klęsk żywiołowych, które stanowią poważne zagrożenie dla życia ludzkiego zarówno w skali globalnej, jak i krajowej ze względu na poważne straty ludzkie, materialne i środowiskowe. Coraz częstsze występowanie powodzi w porównaniu z innymi zagrożeniami naturalnymi podkreśla pilną potrzebę ich oceny i łagodzenia ich skutków. Celem tego badania była ocena i mapowanie obszarów podatnych na powodzie w mieście Sidi Aissa w Algierii przy użyciu procesu hierarchii analitycznej (AHP) i systemów informacji geograficznej (GIS). Miasto zostało wybrane ze względu na trzy przepływające przez nie rzeki. Zastosowano model łączący wielokryterialne podejście statystyczne i GIS. Badanie skupiło się na analizie czynników wpływających na występowanie powodzi, w tym użytkowania gruntów, wysokości, nachylenia, gęstości drenażu, odległości od rzeki i dróg, wskaźnika wilgotności topograficznej (TWI) i znormalizowanego wskaźnika różnicy roślinności (NDVI). Aby obliczyć wagi tych czynników w środowisku GIS, zastosowano metodę AHP, co zaowocowało mapami specyficznymi dla każdego kryterium. Wyniki wykazały, że użytkowanie gruntów (21,7%) i odległość od rzeki (18,2%) są najważniejszymi czynnikami wpływającymi na podatność na powodzie i uszkodzenia pobliskich budynków. Badanie ukształtowało mapę podatności na powodzie podzieloną na trzy kategorie: obszary o bardzo niskiej podatności na powodzie, stanowiące 29% całkowitej powierzchni; obszary o umiarkowanej podatności na powodzie, stanowiące 40% i obszary wysoce podatne na powodzie, stanowiące 31%. Ponadto badanie wykazało skuteczność wykorzystania AHP i GIS w symulowaniu potencjalnych powodzi i identyfikowaniu obszarów podatnych na powodzie, podkreślając tym samym ich znaczenie w planowaniu i łagodzeniu ryzyka powodzi w przyszłości.
Roads are essential to fire departments for saving lives and protecting health. The development of urban structures and the increasing complexity of transport systems necessitate the search for novel solutions and tools for spatial analyses in safety terms. This study aims to determine whether the city’s transport system network exhibits scale-free network characteristics and whether crucial center nodes can be identified for the efficient functioning of the entire system. The study developed two transport system network models: one based on the Topographic Objects Database, and the other on data from devices that record vehicle traffic at selected nodes. Both were found to follow the bell-shaped curve characteristic of random networks; however, the second network model differed significantly from the first model due to the identification of nodes that could potentially act as hubs in an emerging scale-free network. A simulation was conducted to model the impact of cutting off these crucial nodes (centers), with a visualization of the network structure’s behavior. In conclusion, using scale-free network theory to optimize FD operations is reasonable and useful. In this scenario, the transport system network displays scale-free characteristics, thus allowing for the identification of the most crucial functional points of the entire structure.
This study evaluates the effectiveness of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite data for lithological discrimination and mineralogical mapping in the east-central Jebilet region, Morocco. ASTER data offer considerable potential for detecting spectral signatures of mineral zones and determining their composition. The main objective is to apply image processing techniques, such as band ratios (BR), principal component analysis (PCA) and minimum noise fraction (MNF), in order to identify and map characteristic minerals in the region. The application of various band ratios effectively mapped the distribution of key minerals and alteration zones in the study area. The band ratio (band7/band5) was used to identify kaolinite, while the ratio (band4+band6)/band5 highlighted the presence of a mineral group constisting of alunite, kaolinite and pyrophyllite. The ratio (band7+band9)/ band8 revealed a set of a carbonate mineral, chlorite and epidote, whereas endoskarns composed of epidote, chlorite and amphibole were mapped using the ratio (band6+band9)/(band7+band8). The ratio (band5+band7)/band6 characterised phyllic alteration by detecting phyllosilicate minerals such as sericite, muscovite or illite. Phengite was mapped using the band5/band6 ratio. The distribution of these minerals was closely linked to the lithological variability of previously mapped geological units, highlighting the relevance and effectiveness of band ratios for geological mapping using remote sensing. The PCA and MNF components with the highest eigenvalues significantly improved lithological discrimination by reducing noise and refining the delineation of mineral zones. The results obtained have enabled the creation of a detailed map of mineral distribution, highlighting the alteration zones and lithological formations in the eastern Jebilet region of Morocco.time-consuming, yet inexpensive method that can be applied to other areas, especially those that are difficult to reach.
The main objective of this study was to evaluate heavy metal contamination in volcanic and calcareous soils within Morocco’s semi-arid regions, focusing on the relationship between unique soil types and contamination dynamics. Using geographic information systems (GIS), statistical analyses, and several pollution indices, including the geoaccumulation index (Igeo), enrichment factor (EF), contamination factor (CF), and pollution load index (PLI), the research integrates physical and chemical properties to uncover the interactions driving contamination. A total of 64 soil samples from volcanic and calcareous origins, collected at a depth of 20 cm, were analyzed for properties such as organic matter, calcium carbonates CaCO₃, pH, electrical conductivity, and texture, and four heavy metals (Cu, Pb, Zn, and Fe). Findings reveal distinct contamination patterns: calcareous soils had elevated pH, high CaCO₃ levels, and moderate salinity, whereas volcanic soils were more acidic, with higher organic matter content and lower salinity. The contamination indices revealed that all soil samples exhibited some level of contamination, with Zn and Fe concentrations in volcanic soils showing moderate to high pollution levels, while calcareous soils generally displayed lower contamination. The Igeo and CF indices confirmed moderate to high contamination in volcanic soils, particularly for Zn and Fe, whereas calcareous soils showed minimal pollution. The EF analysis indicated slightly higher enrichment for Cu and Zn in calcareous soils than in volcanic soils. The PLI values for both soil types were below 1, suggesting low pollution levels overall. Statistical analyses demonstrated that contamination was shaped by soil characteristics like texture, organic matter, and pH, with anthropogenic sources contributing to heavy metal presence. This study provides new insights into the interaction between soil properties and contamination dynamics in contrasting soil types, revealing that volcanic soils are more prone to heavy metal accumulation due to their physicochemical characteristics. By integrating pollution indices and robust statistical approaches, this work highlights the influence of soil geochemistry on contamination patterns and offers valuable information for informing sustainable land management strategies in vulnerable semi-arid regions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.