Wyrobiska udostępniające funkcjonujące w kopalniach LGOM z racji swojej lokalizacji w mocno zawodnionych i luźnych skałach kenozoicznych wymagały stosowania specjalnej metody ich głębienia. Technologią, którą wykorzystywano od samego początku eksploatacji złoża na monoklinie przedsudeckiej było mrożenie górotworu. Od początku lat 80. ubiegłego wieku stosowane są identyczne parametry tej metody, z nieznaczną modyfikacją wprowadzoną w roku 2000 umożliwiającą wykonanie tzw. mrożenia głębokiego. W ostatnich latach pojawiło się jednak wiele narzędzi umożliwiających modelowanie numeryczne procesu mrożenia, co w sposób szybki i stosunkowo prosty pozwala na wykonanie symulacji narastania płaszcza mrożeniowego w czasie. Z pomocą takich modeli numerycznych możliwe jest wytypowanie najbardziej efektywnej pod kątem czasowym i kosztowym konfiguracji instalacji mrożeniowej. W niniejszym artykule przedstawiono wyniki uzyskane w trakcie realizacji Zadania 4 Projektu I-MORE (w ramach programu CuBR). Optymalizacja procesu mrożenia dotyczyła aspektu jego wydajności oraz energochłonności i objęła m.in.: geometrię kręgu mrożeniowego, instalację obiegu solanki wraz ze zbiornikiem na solankę oraz parametry przepływu czynnika chłodzącego w otworach mrożeniowych, jak i w Stacji Agregatów Mrożeniowych.
EN
LGOM mines are placed in loose Cenozoic rocks, saturated with water. Due to this, the sinking shafts require the use of special methods of rock mass treatment. The technology that has been used since the very beginning was the artificial ground freezing. Since the beginning of the 80s of the last century, the same configuration of this method has been used, with a slight modification in 2000, allowing the implementation of the so-called deep freezing. In recent years, numerical modeling software showed up, which enables the possibility to estimate the rock mass freezing process. With the help of such numerical models, it is possible to select the most effective configuration of the freezing installation in terms of time and cost. This paper presents the results obtained during the implementation of task 4 of the I-MORE project (as part of the CuBR program). The optimization of the freezing process will concern the aspect of its efficiency and energy intensity and include, among others: the geometry of the freezing circle, the installation of the brine circuit along with the brine tank, and the flow parameters of the brine in the freezing pipes as well as in the Freezing Plant Station.
Aimed at the supporting problems of inner shift lining of freezing shaft in the deep thick aquiferous soft rock of the west area in China, the mechanical characteristic of inner shaft is systematically studied by model test and theory analysis. First, the model of high strength reinforced concrete is designed and the test pieces are manufactured according to a similarity theory. Then, through loading test, the stress, strain and strength characteristics of this shaft lining structure are gained. The results indicate that the structure of high strength reinforced concrete shaft lining is under tri-axial compressive stresses states, the distortion is evidently restricted and the concrete compressive strength in the shaft lining structure increases 1.562-1.859 times than the monomial compressive strength, the actual carrying capacity is highly increased, and the concrete utmost compressive strain reached -3500 micro/eta. The shaft lining is fairly plastic when it was damaged. Then a formula for calculating the shaft lining's ultimate bearing capacity is given on the basis of the theoretical research and experimental results. Thus, the studied results can provide a reference for the theory study and engineering application of this shaft lining structure.
PL
Mając na uwadze problemy dotyczące przesunięcia wewnętrznego obudowy w szybach głębionych metodą zamrażania w wodonośnych skałach miękkich na dużej głębokości występujących w zachodnim rejonie Chin, wykonywane są systematyczne badania parametrów przesunięcia wewnętrznego obudowy przy użyciu testów modelowych i analizy teoretycznej. Badanie wymaga wykonania modelu z wytrzymałego żelbetu i elementów testowych zgodnie z teorią podobieństwa. Następnie przeprowadzany jest test obciążenia dla uzyskania charakterystyki naprężeń, odkształceń i wytrzymałości konstrukcji obudowy przesunięcia. Wyniki pokazują działanie naprężeń trójosiowych na ściskaną konstrukcję obudowy z wytrzymałego żelbetu, znaczne zmniejszenie zniekształceń, zwiększenie wytrzymałości betonu na ściskanie w strukturze obudowy 1,562-1,859-krotnie w stosunku do wartości jednomianowej, poprawę nośności rzeczywistej oraz wartość maksymalną wytrzymałości betonu na ściskanie - 3500 micro/eta. Po uszkodzeniu obudowa jest dość plastyczna. Następnie opracowywany jest wzór na obliczenie maksymalnej nośności obudowy na podstawie wyników badań teoretycznych i eksperymentalnych. Wyniki mogą zapewnić odniesienie dla badań teoretycznych i zastosowań technicznych konstrukcji obudowy przesunięcia wewnętrznego.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.