Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 788

Liczba wyników na stronie
first rewind previous Strona / 40 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  artificial intelligence
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 40 next fast forward last
EN
Purpose: The purpose of this publication is to present the applications of usage of business analytics in smart manufacturing. Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic. Findings: The integration of business analytics in smart manufacturing within the framework of Industry 4.0 marks a significant stride in industrial processes, offering manifold advantages alongside notable challenges. Throughout this study, we delve into the expansive realm of business analytics applications, encompassing predictive maintenance, quality control, supply chain optimization, and real-time decision-making. Leveraging business analytics yields palpable benefits in smart manufacturing, exemplified by proactive equipment maintenance, stringent quality standards adherence, and streamlined supply chain operations. Additionally, analytics-driven enhancements in production optimization, energy management, demand forecasting, and asset performance management contribute to heightened productivity, cost reduction, and sustainability improvement. Challenges including data integration complexities, implementation intricacies, security concerns, scalability limitations, model interpretability issues, and skill gaps necessitate concerted efforts for effective resolution. Collaboration among stakeholders- manufacturers, software developers, policymakers, and educational institutions—is imperative. Joint initiatives aimed at bolstering data integration capabilities, providing specialized training, fortifying cybersecurity measures, and fostering a culture of continuous improvement are crucial for successful business analytics deployment. Originality/Value: Detailed analysis of all subjects related to the problems connected with the usage of business analytics in the case of smart manufacturing.
EN
Purpose: The purpose of this article is to identify the use of virtual influencers (VIs) generated using artificial intelligence (AI) in the field of influencer marketing. Design/methodology/approach: A narrative and critical literature review was conducted for this purpose. To identify the activity of virtual influencers, the author conducted an observational study to collect and compare the activity data of virtual influencers who had a minimum of 1,000 followers in 2022 with their current popularity and activity (November 2023). It also conducted an analysis of the advertising activity of selected influencers and an analysis of reach and engagement in 2022-2023. Findings: Analysis of the literature confirms the growing interest in the use of virtual influencers in marketing activities, which is also evident in marketers' current and planned spending on this price. Virtual influencers generate positive results in the level of audience engagement, which makes it possible to consider this means of communication as an attractive alternative. However, significant changes were observed in the number of observers over the year. Of the 54 virtual influencers analyzed, 44% reported a decrease in the number of observers. Research limitations/implications: The area of using computer-generated influencers and using artificial intelligence requires further intensive research. The spread of generative artificial intelligence will certainly affect the pace of change in this area. The observation made only presents data on changes in the popularity and publishing and advertising activity of virtual influencers. In this context, research dedicated to the semiotics of virtual influencers as well as the nature of parasocial interactions would be advisable. Practical implications: The article identifies areas of potential for virtual influencers in influencer marketing. Originality/value: The article adds to the sparse literature to date on virtual influencers, their potential and how they can be used in practice. It will be useful for managers and decision-makers involved in digital marketing.
EN
Purpose: The purpose of this publication is to present the applications of usage of business analytics in customer behaviour analysis. Design/methodology/approach: Critical literature analysis. Analysis of international literature from main databases and polish literature and legal acts connecting with researched topic. Findings: The integration of business analytics with customer behavior analysis in Industry 4.0 environments offers businesses a transformative opportunity to gain profound insights into customer preferences, trends, and behaviors. Through the utilization of state-of-the-art technologies and data-driven methodologies, organizations can attain unprecedented levels of precision and detail in understanding customer behavior. Real-time data collection and analysis facilitate agile responses to evolving market dynamics, enabling personalized customer experiences across various channels. Additionally, advanced analytics tools such as predictive modeling and sentiment analysis empower businesses to forecast future trends, address churn, and enhance customer satisfaction. However, businesses may encounter challenges like data quality issues, privacy concerns, and resource limitations. Overcoming these obstacles necessitates a comprehensive approach, involving investments in data governance, talent acquisition, and technology infrastructure. By surmounting these challenges, businesses can harness the full potential of business analytics to drive strategic decisions, refine marketing strategies, and elevate overall business performance within Industry 4.0 environments. Originality/Value: Detailed analysis of all subjects related to the problems connected with the usage of business analytics in the case of smart manufacturing.
4
Content available AI-supported reasoning in physiotherapy
EN
Artificial intelligence (AI)-based clinical reasoning support systems in physiotherapy, and in particular data-driven (machine learning) systems, can be useful in making and reviewing decisions regarding functional diagnosis and formulating/maintaining/modifying a rehabilitation programme. The aim of this article is to explore the extent to which the opportunities offered by AI-based systems for clinical reasoning in physiotherapy have been exploited and where the potential for their further stimulated development lies.
PL
Systemy wspomagania wnioskowania klinicznego w fizjoterapii oparte na sztucznej inteligencji, a w szczególności na danych (uczenie maszynowe), mogą być przydatne w podejmowaniu i weryfikacji decyzji dotyczących diagnostyki funkcjonalnej ora formułowania/utrzymywania/modyfikowania programu rehabilitacji. Celem niniejszego artykułu jest zbadanie, w jakim stopniu możliwości oferowane przez systemy oparte na sztucznej inteligencji w zakresie rozumowania klinicznego w fizjoterapii zostały wykorzystane i gdzie leży potencjał ich dalszego stymulowanego rozwoju.
EN
The aim of this article is to draw attention to the growing problem of cybersecurity in the field of autonomous vehicles. A notable aspect is the use of autonomous vehicles to enhance the quality of decision-making processes as well as flexibility and efficiency. The implementation of new solutions will lead to improvements not just in transportation and delivery, but also in warehouse management. The growing demand for autonomous solutions, both in the industry and in the daily life of an average consumer, necessitates efforts to ensure their safe operation and use. The present literature review synthetically describes the history of the development of autonomous vehicles and machines. The standards and norms that should be met by products allowed for use as well as threats to cybersecurity, along with examples, are presented herein. The analysis of the collected materials leads to the conclusion that with the development of new technologies and the growth in the importance of autonomous solutions, the number of threats and the importance of systems securing the functioning of devices in cyberspace are increasing. Research on the problem also leads to the conclusion that legal systems do not fully keep up with technological developments, resulting in a lack of normative acts regulating this matter.
PL
Celem artykułu jest zwrócenie uwagi na rosnący problem cyberbezpieczeństwa w dziedzinie pojazdów autonomicznych. Istotnym aspektem jest wykorzystanie pojazdów autonomicznych do poprawy jakości procesów decyzyjnych oraz zwiększenia ich elastyczności i efektywności. Wdrożenie nowych technologii poprawi nie tylko procesy transportowe i dostawy, ale także zarządzanie magazynami. Rosnące zapotrzebowanie na rozwiązania autonomiczne, zarówno w przemyśle, jak i w codziennym życiu przeciętnego konsumenta, prowadzi do konieczności zwiększenia wysiłków na rzecz zapewnienia ich bezpiecznej pracy i użytkowania. W przeglądzie literatury przedstawiono syntetycznie historię rozwoju pojazdów i maszyn autonomicznych, a także normy i standardy, jakie powinny spełniać produkty dopuszczone do użytku, a ponadto zagrożenia dla cyberbezpieczeństwa wraz z przykładami. Analiza zebranego materiału prowadzi do wniosku, że wraz z rozwojem nowych technologii i wzrostem znaczenia rozwiązań autonomicznych liczba zagrożeń oraz znaczenie systemów zabezpieczających funkcjonowanie urządzeń w cyberprzestrzeni wzrasta. Badania nad problemem prowadzą również do konkluzji, że systemy prawne nie nadążają za postępem technologicznym, co skutkuje brakiem aktów normatywnych regulujących przedmiotową kwestię.
EN
This review article explores the historical background and recent advances in the application of artificial intelligence (AI) in the development of radiofrequency pulses and pulse sequences in nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI). The introduction of AI into this field, which traces back to the late 1970s, has recently witnessed remarkable progress, leading to the design of specialized frameworks and software solutions such as DeepRF, MRzero, and GENETICS-AI. Through an analysis of literature and case studies, this review tracks the transformation of AI-driven pulse design from initial proof-of-concept studies to comprehensive scientific programs, shedding light on the potential implications for the broader NMR and MRI communities. The fusion of artificial intelligence and magnetic resonance pulse design stands as a promising frontier in spectroscopy and imaging, offering innovative enhancements in data acquisition, analysis, and interpretation across diverse scientific domains.
PL
Artykuł zawiera przegląd możliwości wykorzystania sztucznej inteligencji (AI) w przedsiębiorstwach przemysłu spożywczego. Wskazuje równocześnie na główne wyzwania oraz problemy, jakie wiążą się z wdrażaniem tej technologii w przedsiębiorstwach sektora w Polsce. Prowadzone badania oraz studia przypadków potwierdzają, że szersze zastosowanie rozwiązań opartych na AI może poprawiać funkcjonowanie przedsiębiorstw sektora, wzmacniać ich konkurencyjność oraz wspierać realizację celów zrównoważonego rozwoju. Z drugiej strony AI może również pogłębiać istniejące nierówności w sektorze, faworyzując większe, technologicznie zaawansowane przedsiębiorstwa kosztem mniejszych podmiotów. W Polsce z rozwiązań AI w 2023 roku korzystało tylko 2,6% przedsiębiorstw przemysłu spożywczego zatrudniających 10 i więcej osób. Kluczowe staje się więc zwiększanie dostępności i promowanie korzystania z technologii AI z myślą o zapewnianiu równych warunków konkurencji w sektorze. W tym kontekście szczególnie istotne jest wdrożenie systemu zachęt i wsparcia dla małych i średnich przedsiębiorstw, które ze względu na ograniczone zasoby finansowe, kadrowe i technologiczne mają większe trudności w zakresie efektywnego pozyskiwania i wykorzystywania nowych technologii.
EN
The article provides an overview of the possibilities of using artificial intelligence (AI) in the food industry enterprises. It also points out the main challenges and problems associated with implementing this technology in sector companies in Poland. Conducted research and case studies confirm that wider application of AI-based solutions can improve the functioning of sector companies, enhance their competitiveness, and support the achievement of sustainable development goals. On the other hand, AI can also exacerbate existing inequalities in the sector, favoring larger, technologically advanced companies at the expense of smaller entities. In Poland, only 2.6% of food industry companies employing 10 or more people used AI solutions in 2023. Therefore, increasing the availability and promoting the use of AI technology becomes crucial to ensure equal competition conditions in the sector. In this context, it is particularly important to implement a system of incentives and support for small and medium-sized enterprises, which, due to limited financial, human, and technological resources, face greater difficulties in effectively acquiring and implementing new technologies.
PL
Przebiegu procesu fermentacji anaerobowej nie można w pełni sformalizować. W tym odniesieniu pożądane jest wykorzystanie metod sztucznej inteligencji (AI) i uczenia maszynowego do monitoringu i sterowania procesami i operacjami jednostkowymi w celu uzyskania bardziej wydajnych metod prowadzenia procesu i ilości produktów końcowych. Akwizycja danych odbywa się przez automatyczny monitoring oraz poprzez badania analityczne. Wiedzę opisującą prowadzenie procesu fermentacji anaerobowej zestawiono w postaci reguł: IF (przesłanka) THEN (konkluzja). Zestawiony zbiór reguł tworzy bazę wiedzy systemu ekspertowego prowadzenia procesu wraz ze wskazówkami dla operatora. Reguły wiedzy są aktualizowane i rozwijane w trakcie prowadzenia procesu, zaś zastosowanie AI zapewnia zachowanie wiedzy operatorów przy zmianach personelu obsługi reaktorów. Przedstawiono budowę laboratoryjnego stanowiska fermentacji anaerobowej odpadów kuchennych i żywnościowych, stosowane urządzenia techniczne, strukturę systemu AI oraz wybrane reguły wiedzy.
EN
Artificial intelligence (AI) and machine learning were used to obtain more effective methods for conducting the digestion process and achieving final products. Data acquisition was carried out by an automatic monitoring and anal. research. The knowledge describing the anaerobic digestion process was summarized in the form of rules: IF (premise) THEN (conclusion). The compiled set of rules created a knowledge base of the expert system, which was used to run the anaerobic digestion process and provided instructions to the operator. Knowledge rules were updated and developed during the process. The construction of a mobile laboratory system for the anaerobic digestion of kitchen and food waste, the tech. devices, the structure of the AI system, and selected knowledge rules were presented.
EN
Artificial Intelligence (AI) combines Machine Learning (ML) and Large Language Models (LLM) on which ChatBots, e.g. GPT-4, are based. Itis accepted and appreciated in almost all areas, but in education it still raises many controversies and concerns. The sooner we introduce ourselves and students to it, the less we will fear it and the more successful our students will be. We should introduce AI elements into most courses, first of all teaching students to interact with ChatBots. It would also be good to create courses with the basics of Machine Learning. Various examples of the use of AI in education, in particular in the Earth sciences, are presented, drawing also attention to various problems and threats.
PL
Dokonując przeglądu stanu wiedzy nt. modelowania informacji o budynku – BIM (ang. Building Information Modelling) można zauważyć, że technologia BIM nie poczyniła ostatnio znacznych postępów, ponieważ sztuczna inteligencja – AI (ang. Artificial Intelligence) nie jest jeszcze w pełni wykorzystana. Celem niniejszego artykułu jest zaprezentowanie możliwości wykorzystania sztucznej inteligencji – AI w modelowaniu BIM. Autorzy dokonali analizy trendów rozwoju sztucznej inteligencji, która jest obecnie wykorzystywana w modelowaniu BIM. W artykule przedstawiono również możliwości wykorzystania AI powiązanej z modelem BIM, a także omówiono wybrane przykłady wspomagania modelowania informacji o budynku z wykorzystaniem głównych czterech grup wybranych technik AI.
EN
When reviewing the state of knowledge on building information modeling (BIM), it can be noted that BIM technology has not made significant progress recently because artificial intelligence (AI) has not been fully used. The purpose of this article is to present the possibilities of using artificial intelligence – AI in BIM modeling. The authors analyzed the trends in the development of artificial intelligence, which is currently used in BIM modeling. The article also presents the possibilities of using AI related to the BIM model, and discusses selected examples of supporting building information modeling using the main four groups of selected AI techniques.
EN
In the introduction, the concept of interactive trees is defined and the purpose of the study is presented. Then, the RGM-2 fuse is described, as are the results of its tests which served as a basis for building specific models. The types of ammunition in which this variation of an artillery fuse is used are listed. A method of building interactive classification trees, allowing the author of the model to interfere with its structure, is described as well. Models of interactive classification trees, such as C&RT, CHAID and XAID have been designed and built. For each model, a tree diagram, a predictor importance sheet, a risk assessment sheet, and a summary of the observed and predicted values are presented. The method of interacting with the constructed classification tree structures, whose task was to improve the designed models, is shown using the examples of two models. The analysis of the models built after the interaction has been performed and, based on the obtained results, the best designed model was selected.
PL
W artykule we wstępie zdefiniowano pojęcie drzew interakcyjnych oraz określono cel artykułu. Następnie, scharakteryzowano zapalnik RGM-2, którego wyniki badań zostały przygotowane do budowy modeli oraz wskazano rodzaje amunicji w których występuje przedmiotowy zapalnik artyleryjski. Opisano metodę budowy interakcyjnych drzew klasyfikacyjnych, która umożliwia ingerencję autora modelu w jego strukturę. Zaprojektowano oraz zbudowano modele interakcyjnych drzew klasyfikacyjnych typu C&RT, CHAID oraz XAID. Dla każdego z modeli przedstawiono schemat zaprojektowanego drzewa, arkusz ważności predyktorów, arkusz oceny ryzyka oraz zestawienie wartości obserwowanych i wartości przewidywanych. Pokazano na dwóch modelach sposób interakcji w zbudowane struktury drzew klasyfikacyjnych, których zadaniem było poprawienie zaprojektowanych modeli. Dokonano analizy zbudowanych po interakcji modeli oraz na podstawie otrzymanych wyników, wskazano najlepszy zaprojektowany model.
EN
This research investigates the relationship between Green Human Resource Management (HRM) practices and environmental performance in organizations in Qatar. The novelty of the study lies in introducing artificial intelligence and technological competence as moderators in realizing the benefits of implementing Green HRM. Data was collected from 357 respondents from large manufacturing/service organizations in Qatar through questionnaire-based survey and analysed using structural equation modelling technique to test the hypothesized relationships among the variables. The findings of the study establish the significant role of Green HRM practices in fostering environmentally sustainable practices within organizations, with technological competence and artificial intelligence moderating the relationships. It was concluded that implementing Green HRM practices enhances the organization’s environmental performance, reputation, and adherence to regulatory and industry standards. This research identifies the need for customized Green HRM strategies tailored to Qatar’s specific environmental challenges and cultural context.
PL
Niniejsze badanie bada związek między praktykami Zielonego Zarządzania Zasobami Ludzkimi (HRM) a wynikami środowiskowymi w organizacjach w Katarze. Nowość badania polega na wprowadzeniu sztucznej inteligencji i kompetencji technologicznych jako moderatorów w realizacji korzyści z wdrożenia Zielonego HRM. Dane zebrano od 357 respondentów z dużych organizacji produkcyjnych/usługowych w Katarze za pomocą ankiety i przeanalizowano przy użyciu techniki modelowania równań strukturalnych w celu przetestowania hipotetycznych zależności między zmiennymi. Wyniki badania potwierdzają znaczącą rolę praktyk Zielonego HRM w promowaniu zrównoważonych środowiskowo praktyk w organizacjach, przy czym kompetencje technologiczne i sztuczna inteligencja moderują te zależności. Stwierdzono, że wdrażanie praktyk Zielonego HRM poprawia wyniki środowiskowe organizacji, reputację i przestrzeganie norm regulacyjnych i branżowych. Niniejsze badanie identyfikuje potrzebę dostosowanych strategii Zielonego HRM dostosowanych do specyficznych wyzwań środowiskowych i kontekstu kulturowego Kataru.
PL
BIM jest podstawą do zrealizowania idei cyfrowego bliźniaka, co z kolei przybliża branżę budowlaną do koncepcji gospodarki o obiegu zamkniętym. BIM łączy się z GIS, IoT, ML i wykorzystuje metody sztucznej inteligencji. Dotychczasowe badania wielokrotnie mapowały BIM w różnych kontekstach. W systematycznych przeglądach naukowcy przeanalizowali obecny stan wiedzy i/lub techniki. Zidentyfikowaną luką badawczą jest brak systematycznego przeglądu, który mapowałby publikacje dotyczące przyszłości BIM. Stąd celem niniejszego artykułu było przeprowadzenie szerokiego systematycznego przeglądu dostępnych prognoz rozwoju BIM i kierunków przyszłych badań nad BIM. W tym celu wykorzystano narzędzia sztucznej inteligencji - dimension.ai i ChatGPT4. Do mapowania wykorzystano narzędzie VosViewer. W artykule zaprezentowano obecne i przyszłe wyzwania stojące przed branżą AECOO. Przedstawiono również prognozy dotyczące rozwoju BIM w nadchodzących latach.
EN
BIM is the basis for arriving at the idea of the digital twin, which in turn brings the construction industry closer to the concept of the circular economy. BIM enters into fusion with GIS, loT, ML and uses artificial intelligence methods. Research to date has repeatedly mapped BIM in different contexts. In systematic reviews, researchers have analyzed the current state of knowledge and/or techniques. An identified research gap is the lack of a systematic review that maps publications on the future of BIM. Hence, the aim of this thesis was to conduct a broad systematic review of available predictions of BIM development and directions for future BIM research. Artificial intelligence tools - dimension.ai and ChatGPT4 - were used to support this aim. The VosViewer tool was used in the mapping. The paper presents the current and future challenges facing the AECOO industry. A prediction was also made about the development of BIM in the coming years.
EN
Measurements using drones have enabled significant changes in the inventorying and monitoring of mining areas. Drone-based measurements can be faster and more accurate [Mazurek 2018]. Aerial photographs taken with drones allow the surveying department in mines to accurately represent the photographed terrain and make precise measurements, which can be used, among other things, to calculate the volume of mass. The aim of the article is to present the results of research on the automated process of acquiring and processing photogrammetric data for the purpose of calculating mass volumes. As part of the research, an algorithm based on classical methods and deep learning was developed. In collaboration with the Silesian University of Technology and 3D Format company from Gliwice, the AGH University of Krakow has developed a system for automated volumetric measurements based on low-altitude photogrammetry using non-metric photos and artificial intelligence (AI) algorithms to provide cyclical volume measurement services on the Polish market. The idea of the system is to acquire data automatically, then provide the data in the cloud, maximize measurement automation, and provide results in near real-time. The entire process is to be conducted using software available through the website. The project was divided into several stages. This particular publication focuses on the automation of the measurement of surveying points.
PL
W artykule przedstawiono analizę statystyczną wieloletnich danych (wartości godzinowe zapotrzebowania na energię elektryczną) z KSE oraz analizę możliwości zastosowania sztucznej sieci neuronowej samoorganizującej się (Self Organizing Map) do podziału dobowych profili zapotrzebowania na energię elektryczną w KSE. Artykuł kończy podsumowanie oraz wnioski z wykonanych analiz statystycznych oraz badań związanych z zastosowaniem SOM do grupowania profili zapotrzebowania na energię.
EN
The article presents a statistical analysis of long-term data (hourly values of electricity demand) from the NPS and an analysis of the possibility of using a self-organizing artificial neural network (Self Organizing Map) to divide daily profiles of electricity demand in the NPS. The article concludes with a summary and conclusions from the conducted statistical analyses and studies related to the application of SOM for clustering electricity demand profiles.
EN
Background: Continuous software engineering practices are currently considered state of the art in Software Engineering (SE). Recently, this interest in continuous SE has extended to ML system development as well, primarily through MLOps. However, little is known about continuous SE in ML development outside the specific continuous practices present in MLOps. Aim: In this paper, we explored continuous SE in ML development more generally, outside the specific scope of MLOps. We sought to understand what challenges organizations face in adopting all the 13 continuous SE practices identified in existing literature. Method: We conducted a multiple case study of organizations developing ML systems. Data from the cases was collected through thematic interviews. The interview instrument focused on different aspects of continuous SE, as well as the use of relevant tools and methods. Results: We interviewed 8 ML experts from different organizations. Based on the data, we identified various challenges associated with the adoption of continuous SE practices in ML development. Our results are summarized through 7 key findings. Conclusion: The largest challenges we identified seem to stem from communication issues. ML experts seem to continue to work in silos, detached from both the rest of the project and the customers.
EN
With global life expectancy rising every year, ageing-associated diseases are becoming an increasingly important problem. Very often, successful treatment relies on early diagnosis. In this work, the issue of Parkinson's disease (PD) diagnostics is tackled. It is particularly important, as there are no certain antemortem methods of diagnosing PD - meaning that the presence of the disease can only be confirmed after the patient's death. In our work, we propose a non-invasive approach for classification of raw speech recordings for PD recognition using deep learning models. The core of the method is an audio classifier using knowledge transfer from a pretrained natural language model, namely wav2vec 2.0. The model was tested on a group of 38 PD patients and 10 healthy persons above the age of 50. A dataset of speech recordings acquired using a smartphone recorder was constructed and the recordings were labelled as PD/non-PD with the severity of the disease additionally rated using Hoehn-Yahr scale. We then benchmarked the classification performance against baseline methods. Additionally, we show an assessment of human-level performance with neurology professionals.
PL
W artykule została omówiona rola sztucznej inteligencji (SI) w różnych dziedzinach życia, ze szczególnym uwzględnieniem jej znaczenia w siłach zbrojnych. Autorka wskaza¬ła globalne inwestycje w technologię SI, zwłaszcza największych światowych mocarstw z jednoczesnym podkreśleniem jej zastosowania w wojsku. Wśród przykładów użycia sztucznej inteligencji w artykule zostały omówione m.in. autonomiczne systemy broni, analizy danych do podejmowania szybkich decyzji strategicznych, problematyka cyberbezpieczeństwa, a także symulacje i szkolenia wojskowe. Celem autora było unaocznienie procesu zwiększania zdolności obronnych i strategicznych państw poprzez zastosowanie sztucznej inteligencji, która jednocześnie wpływa na globalną równowagę sił. Autorka udowodniła tezę, że wykorzystanie SI w przyszłej wojnie zależy głównie od rozwoju technologii, nakładów finansowych, umiejętności i zasobów ludzkich, a także od współpracy międzynarodowej oraz kwestii etycznych i moralnych. W artykule zaprezentowała: historyczny rozwój SI w wojsku, najnowsze technologie i ich potencjalne zastosowania oraz przepisy prawa międzynarodowego dotyczące wykorzystania SI w konfliktach. Dodatkowo przytoczyła przykłady użycia SI w konfliktach zbrojnych i podkreśliła wyzwania etyczne i moralne związane z jej użyciem w wojnie. Zdaniem autorki sztuczna inteligencja zmienia sposób prowadzenia wojen, ponieważ oferuje znaczące korzyści, ale też rodzi nowe wyzwania. W podsumowaniu wskazała na konieczność odpowiedzialnego stosowania SI, zgodnego z etyką i prawami człowieka oraz potrzebą globalnej współpracy i regulacji prawnych w zakresie jej wykorzystania w wojskowości.
EN
The article discusses the role of artificial intelligence (AI) in various areas of life, with particular emphasis on its importance in the armed forces. The author pointed out global investments in AI technology, especially by the world’s major powers while highlighting it’s application in the military. Among the examples of the use of artificial intelligence, the article discussed autonomous weapon systems, data analysis for rapid strategic decision-making, cyber security issues, as well as military simulation and training. The author’s goal was to visualize the process of enhancing the defense and strategic capabilities of states through the use of artificial intelligence, which simultaneously affects the global balance of power. The author proved the thesis that the use of AI in future war mainly depends on the development of technology, financial inputs, skills and human resources, as well as international cooperation and ethical and moral issues. In the article she presented: the historical development of AI in the military, the latest technologies and their potential applications, and international law on the use of AI in conflicts. In addition, she cited examples of the use of AI in armed conflicts and highlighted the ethical and moral challenges associated with its use in war. According to the author, artificial intelligence is changing the way wars are fought, as it offers significant benefits, but also raises new challenges. In conclusion, she pointed to the need for responsible use of AI, consistent with ethics and human rights, and the need for global cooperation and regulation regarding it’s use in the military.
EN
The article aims to present two hostile tools employed in the cybersphere against internet users. The first one is doppelganger, and the second one is deepfake. The paper highlights some examples of using both to influence the social cognitive dimension in the infosphere. Diagrams and charts presented in the article depict the vast scope between society and the media, which is the main source of information and the nest for disinformation. The article discusses the use of artificial intelligence for hostile purposes and the possible means by which to gain resilience against disinformation.
PL
Intencją autora artykułu jest przedstawienie dwóch wrogich narzędzi stosowanych w cyberprzestrzeni przeciwko użytkownikom internetu. Pierwsze z nich to doppelgänger, a drugie to deepfake. W artykule wskazał przykłady wykorzystania obu metod dezinformacyjnych do oddziaływania na społeczny wymiar poznawczy w infosferze. Zaprezentowane w artykule diagramy i wykresy obrazują rozległy zakres relacji społeczeństwa z mediami, które w istocie są zarówno głównym źródłem informacji, jak i siedliskiem dezinformacji. Autor pokazał wykorzystanie sztucznej inteligencji do wrogich celów oraz konkretne kroki, jakie można podjąć, żeby uzyskać odporność na dezinformację.
EN
This article touches on the issue of understanding and approach to the use of AI by the British army from the perspective of a representative of the British armed forces. The article will address the issues of tripartite division as to the essence of the problem today. This article was an excellent part of the author’s speech delivered during the international conference 2023 Warsaw Cyber Summit.
PL
Artykuł dotyczy zrozumienia i podejścia do wykorzystania sztucznej inteligencji przez armię brytyjską z punktu widzenia przedstawiciela brytyjskich sił zbrojnych. Jest w nim poruszona kwestia trójpodziału podejścia i zrozumienia tego zjawiska w Siłach Zbrojnych Wielkiej Brytanii. Niniejszy artykuł powstał na podstawie wystąpienia jego Autora podczas 2023 Warsaw Cyber Summit.
first rewind previous Strona / 40 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.