Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 287

Liczba wyników na stronie
first rewind previous Strona / 15 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  surface treatment
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 15 next fast forward last
EN
Boiling heat transfer can be enhanced when the heater’s surface morphology is altered. The paper discusses the use of the laser beam to produce efficient heat exchangers. Two types of samples were investigated with distilled water and ethyl alcohol as boiling agents. The specimens differed with the height of the microfins: 0.19 mm and 0.89 mm. It was observed that both of them enhanced boiling heat transfer in comparison to the smooth reference surface. However, the sample with higher micro-fins performed better, especially in the region of low temperature differences, where the heat flux was about three times higher than in the case of the smaller microfins. The comparison of the experimental data with selected models of boiling heat transfer revealed significant differences with regard to the heat flux. The laser-made samples dissipated larger heat fluxes than it could be anticipated according to the models. It might be linked with high surface roughness of the area between the microfins, generated as a result of the laser beam interaction with the surface.
EN
Purpose: The traditional method of regeneration of railway wheels is the correction of the shape of the running surface by reprofiling using semiautomatic lathes adapted to machining and measuring the parameters of railway wheels. Traditional reprofiling causes the thickness of the rim to decrease over time to such an extent that it has to be replaced. During reprofiling, at least 6 mm of metal is removed from the running surface of the wheel. Design/methodology/approach: One of the possible effective ways to create, produce, analyse, and optimise new and existing industrial production processes of metal treatment, including laser technologies, is to develop qualitative and quantitative knowledge helping to understand the thermal processes existing in the mutual relations between wear resistance and hardness. Findings: As a result of accidents that occurred on the world railways, it was found out that the traditional surfacing process, including cladding and or remelting, is not used for wheel regeneration for safety reasons. Research limitations/implications: Therefore, fibre laser cladding was chosen for investigation as a more sophisticated tool compared to the often used Diode Laser, which has a more accurate laser beam with even higher energy density. Depending on the situation and the welding technique used, the weld can be made with materials in the form of fine powder, wire, or self-shielding wire. Practical implications: As a result of cladding, the surface layer can be enriched with metal particle, and in some cases, a high-quality top layer can be obtained. Concerning the original practical implications of this work, it was important to investigate the appliance possibility of cladding for enhancement of the surface properties. Originality/value: The scientific reason was also to describe structure changes and compounds occurring on the remelted laser surface. It is also important to determine the laser treatment parameters, particularly the laser power, to achieve a high value of layer hardness and wear resistance to protect the newlynew developeddeveloped material from losing their properties and to make the wheels surface more resistant to wear.
EN
Among many bulk metallic glasses, the Zr-based ones are distinguished by their unique combination of high glass forming ability with good mechanical properties. The aim of this work was to investigate the possibility of the Zr48Cu36Al8Ag8 bulk metallic glass oxidation in low-temperature plasma to improve its micromechanical properties without the substrate crystallization. The influence of the ions accelerating voltage (600-1000 V) and the process time (30-120 min) on the surface structure and its mechanical properties were determined. After the process, the X-ray diffraction phase analysis, microscopic observations, micro- and nano-hardness as well as tribological tests were performed. It has been revealed that it is indeed possible to plasma treat a Zr-based BMG without substrate crystallization and obtain an oxide layer which improves surface properties. Moreover, the results provided in the manuscript show that it is possible to prepare a single or double layer of oxides depending on the process parameters. Optimizing the parameters is necessary to obtain the desired microstructure and properties.
EN
The purpose of the work is to present issues related to the influence of surface treatment on the strength of adhesive joints of C45 steel sheets by grinding based on experimental research. These issues were related to determining the impact of the gradation and type of abrasive material on the strength of adhesive joints of the steel sheets. The grinding was carried out manually using an angle grinder with a disc diameter of 125 mm and a rotational speed of 11,060 min-1, using abrasive materials with grains made of: ceramics, zirconium and electro-corundum with a gradation of P40, and sandpaper with grains made of electro-corundum with various grain sizes with three gradations P40, P220, P400 (according to European FEPA standards). To make the adhesive joints of steel sheets, the epoxy adhesive was used, which contains an epoxy resin based on bisphenol A and a triethyleneteramine curing agent. A profilographometer from Hommel - Etamic was used to determine selected 2D and 3D surface roughness parameters, and the strength tests of the steel sheets adhesive joints were performed on a ZWICK/ROELL Z150 testing machine. The analysis of the tests showed a significant impact of the surface treatment method on the attained shear strength of the steel sheets adhesive joints. Comparing the samples prepared with electrocorundum of the variable gradation, the tests exhibited that the samples prepared with P40 paper had the highest roughness, while samples prepared with P400 paper had the highest shear strength. Roughness analysis indicated that in the comparison group of samples prepared with abrasives of the various abrasive materials, ceramics showed the highest roughness parameters and the shear strength of the adhesive joints after this treatment.
EN
Seepage control is critically essential for dams, slopes, and the stability of many engineering structures, developing over many years using different methods. This study presents a novel approach for seepage control using the photopolymerization technique to form an impermeable crust at the soil surface. Effects of exposure duration (5, 10, 15, and 30 min) and light intensities (140, 550, 710, and 1000 W/m2) on the seepage control effectiveness of four different sand soils were investigated by using the photopolymerization technique. The three-point bending, permeability and acid rain simulation tests were performed to illustrate the effect of photopolymerization on the seepage control of sand soils. Furthermore, the influence of photopolymerization on the microstructure of soils was examined with the aid of SEM analysis. The results indicated that the photopolymerization technique could improve the crust strength, acid rain durability, and permeability of sand soils. The crusts at the surface layer of soils were formed after the photopolymer was applied to the sand surface and then exposed to UV light. These crusts of different soils have bending strengths and thicknesses in the range of 34.57 and 68.07 MPa, 2.13 and 6.18 mm, respectively. The increase in exposure duration and light intensity, resulted in the gradual increment of soil crust thickness. On the other hand, the increase in light intensities have more effective on the crust thickness. The formed soil crust has been provided an impermeable surface that prevents the weight loose from the surface of the soil under acid rain conditions. The SEM analysis indicated that the photopolymerized gels were homogeneously distributed between the grains in all samples, although the grain distribution of soils were different. Since the photopolymerization method has a short treatment duration and is easier to apply on the sand surface, the occurrence of the crust at the soil surface by this technique may open a new and improvable path for seepage control. The obtained results showed that the photopolymerization method is promising for repairing, restoring, and strengthening the construction materials in different engineering areas, as well as seepage control.
EN
The aim of the work was to analyze the method of preparing the aluminum surface in terms of the functional properties of glued joints with the use of one-component polyurethane adhesive. Six methods of surface treatment of EN AW-5251 aluminum alloy were tested. In addition, changes in the shear strength of adhesive joints after environmental exposure were determined. The best surface preparation processes were atmospheric plasma and anodizing.
PL
Celem pracy była analiza sposobu przygotowania powierzchni aluminium pod kątem właściwości użytkowych połączeń klejonych z zastosowaniem jednoskładnikowego kleju poliuretanowego. Zbadano sześć metod obróbki powierzchni stopu aluminium EN AW-5251. Ponadto określono zmiany wytrzymałości połączeń klejonych na ścinanie po ekspozycji środowiskowej. Najlepszym sposobem przygotowania powierzchni była plazma atmosferyczna i anodowanie.
EN
This work studied the surface, interface state and physicochemical properties of HNO3-treated and KOH-treated carbon fiber. Poly(methyl methacrylate) (PMMA) composites were prepared by the autoclave molding process using surface-treated carbon fiber as reinforcements. The physical and chemical states of the carbon fiber surfaces and the micro-interface properties and interlaminar shear properties of the composites were studied. The results show that the surface of the HNO3-treated carbon fiber has more groove structure and higher surface roughness and thus forms a better physical bond with the resin matrix. Although the oxygen-containing functional groups of the two carbon fibers are equivalent, the surface oxygen of the HNO3-treated carbon fiber is relatively high, which is beneficial to form a better chemical bond with the matrix resin, and the interfacial shear strength is about 14% higher than that of the KOH-treated carbon fiber composite.
EN
The application of titanium alloys is limited due to their low surface hardness and wear resistance, especially for parts operating under friction and contact loads. One of the most widely used technologies for the thermochemical treatment of titanium alloys is gas nitriding. A new method in this direction is surface plasma gas nitriding using indirect arc plasmatrons operating in a chamber with a controlled nitrogen atmosphere. In the present work, the changes in the phase transformations, microstructure, and surface hardness of titanium alloy Ti-8Al-1Mo-1V after plasma gas nitriding at the power of 18 kW, and 25 kW for a time between 5 and 30 minutes are studied. The plasma gas nitriding with the indirect plasmatron of the titanium alloy produced continuous surface layers. Analysis of the surface showed the presence of TiN and TiO2. The thickness of the plasma gas nitrided layers ranges between 100 μm and 350 μm, depending on the technological parameters.
EN
The article discusses the most important changes in the construction of permanent mould casting machines, as well as the method of casting engine pistons and their construction on the example of Federal-Mogul (FM) Gorzyce. The system of automatic cooling of the presently used permanent mould casting machines coupled with robots which pour the liquid alloy ensures uniform crystallization of the pistons and optimal efficiency of the casting process. As a result of the necessity to improve the engine efficiency and thus reduce the fuel consumption and harmful substance emission, the construction of the pistons has changed as well. The piston castings, which are produced by gravity casting for metal moulds, have undergone a diametric transformation. Typical piston designs for gasoline and Diesel engines are shown together with the most important parts of the piston, the crown (combustion chamber) and the guide part (skirt). Depending on the type of engine, the present pistons characterize in differently shaped crown, a slimmed internal construction as well as component participation (cooling channels and ring inserts), and the piston skirts undergo surface treatment procedures.
EN
Ultra-high performance concrete (UHPC) is a type of cementitious material that has been specifically engineered to achieve exceptional mechanical properties and durability through optimized particle filling. However, the addition of steel fibers to the UHPC matrix creates a transitional region at the interface. Previous research has indicated that the use of silane coupling agents (SCA) on the surface of steel fibers is a promising approach for improving the bonding properties between the fibers and the matrix. This study aims to explore the impact of varying amounts of untreated steel fibers versus those that have undergone SCA treatment on the durability of UHPC. The findings indicate that treating steel fibers with SCA significantly narrows the pore space between the matrix and steel fibers, as well as enhances the production of hydration products on the steel fiber surface. Furthermore, this treatment facilitates the formation of a compact transition zone between the UHPC matrix and steel fibers. The electrochemical corrosion resistance, chloride ion penetration resistance, frost resistance, and sulfate erosion resistance of UHPC are all enhanced by this method. As a result, the durability of UHPC is significantly improved, making it an extremely promising avenue of research.
EN
The surface treatment industry generates effluents with a high load of highly toxic chemicals which must be treated under increasingly stringent regulation. The aim of this study was to treat the effluents of surface treatment unit of an aeronautical industry by the electrocoagulation process using aluminium electrodes. This process is used to study the performance to remove colloidal load, significant amount of oxidizable material and high levels of various metal elements (Cr, Fe, Zn, Cu and Al) from these effluents, under optimum conditions of pH 7, 8.6A of current intensity and 60 min of application. The electrocoagulation process was found to be effective in reducing turbidity (97.12%), COD (97.5%), SS (97.84%) and conductivity (96.82%), hexavalent chromium (99.99%), Zn (96.82%), Cu (94.3%), Iron (99.9%), Al (91.96%). The treated effluent conformed to the Moroccan standards of surface treatment discharge.
EN
The recent trend of using aluminium alloys instead of steel has reached the transportation industry, where increasingly, more parts are made of aluminium. An example is the belt pulley, applied for combustion engines for energy transmission. This part should be strong, durable, and lightweight. Aluminium-silicon alloys are a good choice, moreover, even when the surface is anodised, also because of their moderate inertia control and excellent wear characteristic during mechanical operations. Since aluminium is lightweight yet mechanically durable and anodised, it is an ideal belt pulley to use, especially in high-temperature operations. However, the main question is what type of Al-Si alloy, casting method and anodisation method should be used in terms of energy adsorption, having long-term properties for a lifetime, has to be applied. For this reason, this paper presents the influence of the chemical composition, casting method and anodising parameters on the structure and thickness of the anodic layer produced on aluminium alloys, as well as on the albedo value as an ability to reflect or absorb light. The aluminium alloys, AlSi12Cu1 and AlSi9Cu3, were used as research materials, obtained using different casting methods. The goal of this work was to determine the optimal combination of the anodisation conditions and materials for maximising the reflectivity factor of the surface, as a very important factor, determining the energy amount absorbed by an anodised surface. For further improvement of these surface properties as well as for enhancement of the properties and strengthen the material produced with different aluminium alloys production methods, different alloying additives were added. In addition, the mechanical properties of the surface layer were measured, where a remarkable hardness increase was obtained, and the best combination in form of AlSi12Cu1 high pressure cast was found with the highest albedo factor among all tested surface variants.
13
Content available remote Effect of the surface treatment on the strength of the single-lap adhesive joints
PL
W artykule przeanalizowano wytrzymałość na ścinanie jednozakładkowych połączeń klejowych wykonanych z ocynkowanej powłoki blachy stalowej. Obróbkę mechaniczną próbek przeprowadzono przy użyciu papierów ściernych P120, P180, P220, P400 i P600. W eksperymencie zastosowano dwa warianty obróbki powierzchni: z odtłuszczaczem i bez odtłuszczacza. Do wykonania połączeń użyto dwuskładnikowego kleju epoksydowego Epidian 53/IDA/100:40. Badania wytrzymałościowe przeprowadzono na maszynie wytrzymałościowej Zwick/Roell Z150, norma PN-EN 1465. W artykule zamieszczono również wyniki pomiaru siły maksymalnej oraz wartości parametrów chropowatości powierzchni (Ra, Rz, Rq) próbek przygotowanych bez odtłuszczacza. Pomiary parametrów chropowatości powierzchni (Ra, Rz, Rq) wykonano przy użyciu profilometru HOMMEL TESTER T1000, zgodnie z normą PN-EN ISO 4287. Maksymalną wartość wytrzymałości na ścinanie (2,70 MPa) uzyskano dla próbek przygotowanych papierem ściernym P220 z użyciem odtłuszczacza, a najmniejszą (1,02 MPa) dla próbek przygotowanych papierem ściernym P180 z użyciem odtłuszczacza.
EN
The paper analyzed the shear strength of the single-lap adhesive joints made of zinc galvanized coat of steel sheet. Mechanical treatment of the samples was carried out using P120, P180, P220, P400 and P600 abrasive papers. In the experiment were used two variants of surface treatment: with a degreaser and without a degreaser.A two-component epoxy adhesive Epidian 53/IDA/100:40 was used to make the joints.The strength tests were carried out on a Zwick/Roell Z150 testing machine, PN-EN 1465 standard. The article contains also the results of the maximum force and the values of the surface roughness parameters (Ra, Rz, Rq) of the samples prepared without a degreaser. The measurements of surface roughness parameters (Ra, Rz, Rq) were made using a HOMMEL TESTER T1000 profilometer, according to PN-EN ISO 4287. The maximum value of the shear strength (2.70 MPa) was obtained for the samples prepared with P220 abrasive paper using a degreaser and the lowest (1.02 MPa) for the samples prepared with P180 abrasive paper using a degreaser.
EN
Surface remelting and subsequent nitriding improves the surface properties of cast irons. Upon remelting, a white-solidified surface layer forms, which contains coarse Si-free eutectic cementite (θ) and Si-enriched ferrite, pearlite or martensite in the intercarbidic regions between the eutectic θ. Nitriding produces a compound layer at the surface, which is composed of ε and γ’-iron (carbo)nitrides and enhances the corrosion resistance. Nitriding of white-solidified Fe-C-Si alloys, being model materials for remelted low-alloy ferritic cast irons, has shown that Si dissolved in α-Fe notably affects the formation of ε and γ’ in intercarbidic regions while Si simultaneously precipitates as amorphous nitride, X. Under process conditions only allowing for the formation of γ’ in pure Fe, Si dissolved in α-Fe promotes the formation of ε over the formation γ’, whereas Si-free eutectic θ transforms into nitride following the sequence θ → ε → γ’. The present work studies the nitriding of white-solidified Fe-3.5wt.%C-3wt.%-M alloys with additions of M = 1 wt.% Mn, 1 wt.% Cu or 1 wt.% Mn + 1 wt.% Cu, serving as model materials for remelted pearlitic cast irons. The presence of Mn and/or Cu causes notable deviations from the nitriding behavior known from Fe-C-Si alloys. Mn accelerates the precipitation of X in intercarbidic regions and obstructs the transformation of ε formed from Si-free θ into γ’. Cu promotes the formation of γ’ in Si-rich intercarbidic regions, surpassing the ε-promoting effect of Si.
PL
Powierzchniowe utrwalenie (PU) to powszechnie znana technologia „na zimno” dedykowana zwłaszcza dla dróg o niższym natężeniu ruchu. Jest to prosty zabieg wykorzystujący emulsję asfaltową oraz kruszywo. Polega na skropieniu nawierzchni lepiszczem, jakim jest emulsja i zasypaniu jej odpowiednim kruszywem oraz uformowaniu mozaiki kruszywowej walcem. Poszczególne elementy prac można stosować w dowolnej konfiguracji omówionej w dalszej części artykułu oraz w wybranym zwielokrotnieniu. O sposobie aplikacji i ilości zużytych materiałów decydować będzie zamawiający oraz wykonawca w porozumieniu z zamawiającym, tak aby optymalnie dobrać materiały oraz rodzaj powierzchniowego utrwalenia do budżetu.
EN
Laser cladding is a method that can be applied to repair the crack and break on the mold and die surfaces, as well as generate new attributes on the surface to improve toughness, hardness, and corrosion resistance. It is used to extend the life of the mold. It also has the advantages of superior bonding strength and precision coating on a local area compared with the conventional thermal spraying technology. In this study, we investigated the effect of cladding on low carbon alloy steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), which showed high hardness on the die surface. The process conditions were performed in an argon atmosphere using a diode laser source specialized for 900-1070 nm, and the output conditions were 5, 6, and 10 kW, respectively. After the cladding was completed, the surface coating layer’s shape, the hardness according to the cross-section’s thickness, and the microstructure were analyzed.
EN
The aim of the conducted research was to examine the possibility of using chemical and physical methods of surface treatment of elements printed on a 3D printer. Elements were printed from polylactide (PLA) and acrylonitrile-butadiene-styrene (ABS) – materials most commonly used in fused filament fabrication (FFF) technology. Roughness measurements were made to assess the quality of individual methods. The best surface smoothness results were obtained during abrasive paper processing and after applying epoxy resin. The intended effect was also obtained after processing samples from PLA in chloroform fumes, and ABS samples in acetone vapors.
PL
Zbadano możliwości wykorzystania chemicznych i fizycznych metod obróbki powierzchniowej elementów wydrukowanych za pomocą drukarki 3D. Elementy wytworzono z polilaktydu (PLA) i kopolimeru akrylonitrylo-butadieno-styrenowego (ABS) – materiałów najpowszechniej stosowanych w technologii Fused Filament Fabrication (FFF). Jakość wykonania przy użyciu poszczególnych metod oceniano na podstawie chropowatości powierzchni wytworzonych elementów. Najlepszą gładkość powierzchni uzyskano w wyniku obróbki wydrukowanych elementów papierami ściernymi i nałożeniu żywicy epoksydowej. Zamierzony efekt uzyskano też w wyniku obróbki próbek z PLA w oparach chloroformu, a próbek z ABS w oparach acetonu.
EN
The physicochemical properties of polyether ether ketone (PEEK) allow to use this material for prosthetic restorations applied in implant prosthetics. So far, such attempts have been made in the technology of milling rough material solids of this polymer, but the surface quality was unsatisfactory. Therefore, the production of these materials by additive manufacturing techniques was proposed and an attempt was made to shape their surface using a laser. The possibilities of the method are determined in the paper and preliminary works related to the product surface shaping are presented. The process of making individual prosthetic restorations from the PEEK material by the additive method together with the technology of laser modification of the geometric structure of the material surface for applications in implant prosthetic treatment of patients is innovative and has not been used so far.
EN
The paper presents an example of the application of vibratory machining for castings based on the results of visual testing. The purpose of the work is to popularize non-destructive testing and vibratory machining as finishing process, especially in the case of cast objects. Visual testing is one of the obligatory non-destructive tests used for castings and welded joints. The basic requirements concerning the dimensional accuracy and surface texture of cast components are not met if visible surface flaws are detected. The tested castings, which had characteristic traces of the casting process, were subjected to vibratory machining. The machining with loose abrasive media in vibrating containers is aimed at smoothing the surface and reducing or completely removing flashes. To complement the visual testing were also conducted research on the contact profilometer Taylor Hobson PGI 1200. Particular attention was focused on measuring the height of flashes and changes in the surface of smoothed details based on BNIF No. 359 touch-visual patterns. Based on the work, it can be concluded that vibratory machining allows for removal flashes and smoothing of the surface of aluminum alloy cast objects.
PL
W pracy omówiono wyniki badań możliwości wykorzystania odpadów z polipropylenu (PP), polietylenu (PE) i poliamidu (PA), uzyskanych z zakładu przetwarzania odpadów, jako wzmocnienie zapraw. Jednym z głównych problemów związanych z wykorzystywaniem odpadów z tworzyw sztucznych w kompozytach cementowych jest hydrofobowość powierzchni tworzywa sztucznego, która uniemożliwia adhezję zaczynu cementowego. W badaniach zastosowano rozcieńczony roztwór izopropanolu do obróbki powierzchniowej tworzyw sztucznych. Przy projektowaniu mieszanin uwzględniono trzy zmienne; rodzaj tworzywa sztucznego (PP, PE, PA), ich dodatek oraz ich obróbkę powierzchniową. Przeprowadzono badania wytrzymałości na zginanie i ściskanie. 1,5% dodatek PP i PE zwiększył wytrzymałość na zginanie zaprawy, natomiast obróbka powierzchniowa nie wpłynęła na tę wytrzymałość. Wraz ze zwiększaniem dodatku tworzyw sztucznych zwiększała się energia pękania zapraw z tymi tworzywami. Dla stosunku objętościowego 1,5% zwiększeniu uległa energia pękania w odniesieniu do mieszaniny wzorcowej, przy czym największy wpływ miał odpad PP. W przypadku niepoddanych obróbce powierzchniowej odpadów stwierdzono znaczne zwiększenie energii pękania, przy równoczesnym zmniejszeniu wytrzymałości na ściskanie i energii pękania przy ściskaniu, jednak ten wpływ uległ zwiększeniu po obróbce powierzchniowej odpadów. Odpadowe tworzywa sztuczne mogą być stosowane w zaprawach lub w betonach, w celu poprawy ciągliwości i udarności. Równocześnie wykorzystanie tych odpadów eliminuje zanieczyszczenie środowiska.
EN
This study aims to investigate the feasibility of using industrial waste plastics, polypropylene (PP), polyethylene (PE) and polyamide (PA), obtained from recycling factory, as reinforcement for mortar. As one of the main problems of using waste plastics in cementitious composites is the hydrophobic properties of the surface of the plastics, because it prevents the formation of adequate interfacial adhesion with cement paste. Surface treatment of waste plastics was applied using diluted solution of isopropanol. Three parameters were considered when designing the mortar mixtures; type of waste plastic (PP, PE, PA), their addition ratio and surface treatment. Bending and compression tests were conducted. 1.5% volume addition of PP and PE to mortars the flexural strength was increased, however, surface treatment of waste plastics did not affected this strength. As the waste plastic volume ratio increased, the flexural toughness of mortars reinforced with PP, PE and PA plastics was also increased. For the 1.5% volume ratio, there was the increase of flexural toughness with respect to the reference mortar and the highest influence had the PP. For the untreated waste plastics, there was significant increase in flexural toughness, while reduction in the compressive strength and compressive toughness was found, however, this surface treatment enhanced the compressive strength and compressive toughness with respect to untreated plastics. Waste plastics can be used for mortars and concretes reinforcement to improve the ductility and energy absorption capacity while eliminating pollution and regaining them in the economy as a structural material.
first rewind previous Strona / 15 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.