Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  sinkhole deposits
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
A palynological analysis was carried out on about 115 samples from two borehole cores, containing the infills of two palaeosinkholes at Górażdże. In both sinkholes, well preserved palynofloras were found in several lignite samples. A total of 54 fossil species, including 5 species of cryptogam spores, 7 species of gymnosperm pollen and 42 species of angiosperm pollen, were identified. No marine palynomorphs or microremains re-deposited from older sediments have been found in these samples. The spore-pollen assemblage made it possible to date the sinkhole deposits. The composition of the assemblage (e.g., abundance of small tricolporate pollen grains of the Fagaceae family, including Cupuliferoipollenites pusillus, Fususpollenites fusus, and Quercoidites microhenricii) indicates that the age of the lignites in both sinkholes is early Oligocene. Thus, the deposits at Górażdże correspond to the 5th Czempiń lignite seam group. The 5th seam occurs mainly in northwestern Poland and its lignites were deposited in isolated wetland basins with marine influences. The terrestrial Górażdże palynoflora without any marine influence shows mainly local early Oligocene vegetation from the surrounding area. The results are also direct evidence of the multiphase palaeokarst of the Silesian-Cracow Upland, including the deposition of lignites of various ages.
A sinkhole, developed in Middle Triassic limestones and filled with clastic and organic deposits, including lignite, was studied, in terms of its origin and age. The sinkhole represents a solution sinkhole, which originated through the subsidence of surficial deposits into an underlying cave system. The study permitted the recognition of three main stages of sinkhole evolution. During the initial stage, subterranean and surface karstification proceeded concurrently. As a result, a terra rossa cover developed at the surface and a cavern system was formed in the underlying bedrocks. During the second phase, both systems became connected and the soil cover subsided. This, in turn, involved the formation of a depression at the land surface and ponding of the drainage water. The pond was filled with plant debris, later giving rise to lignite formation. During the third and final stage, the sinkhole was filled with quartz sands with kaolinite, derived from eroded, Upper Cretaceous sandstones and marls. Results of pollen analysis from the sinkhole indicate the presence of mesophytic forests and show a significant role of riparian forests and herbaceous vegetation. The occurrence of abundant, freshwater algae and the pollen of aquatic plants evidences sedimentation of the infill in a water body (pond). The apparent dominance of arctotertiary and cosmopolitan, palaeofloristical elements, as well as the occurrence of only sparse, palaeotropical elements (mainly subtropical), indicate a warm-temperate climate (cooler than during the Early and Middle Miocene period). A comparison of the sporomorph association from the sinkhole with those from other Neogene sites provides evidence of its Late Miocene age (Late Pannonian–Early Pontian).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.