Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 40

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  geological mapping
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The research task Geological integrated coastal zone mapping concerns the recognition and visualization of the geological structure of the Polish coastal zone, enriched with the modelling of erosion-accumulation processes, including prediction of changes in the position of the shoreline and identification of geohazards. It has been running since 2012 and implements multi-instrumental research methods. To date, a total length of about 155 km of the Polish coastal zone has been studied in an area of about 621 km 2 . The main results of the work are presented in the form of maps (e.g., lithogenetic, hydrogeological, geohazard), models (e.g., morpho-geological, hydrodynamic, predictive) and specialized analyses (e.g., morphodynamical, slope stability). In general, the work carried out is done for a utilitarian purpose, i.e. aimed at the practical use of environmental information. According to the standards of the Polish Geological Survey, most of the geological data acquired can be geoprocessed.
EN
The study focuses on the hydro-geochemistry of Shaune Garang glacier’s meltwater concerning glacial geomorphology. Seventy-nine water samples (53 in 2016 and 26 in 2017) of ablation season were analysed. The cations were dominant in the order Ca2+ > Mg2+ > Na+ > K+, and the anions in the order HCO3- > SO4 2- > Cl- > NO3-. The result demonstrated that HCO3 - were the abundant ions, accounting for 41.03 and 34.84% of the total ionic budget (TZ). The high ionic proportions of (Ca2+ + Mg2+) versus TZ+ and (Ca2+ + Mg2+) versus (Na+ + K+) were identified as the primary factors influencing dissolved ion chemistry in meltwater. Piper diagram shows that Ca2+–HCO3- type water is the most common, followed by Mg2+–HCO3-. In addition, a remote sensing approach has been used to find the possible source of the chemical constituents in the meltwater. The catchment geology has been mapped on various scales, including diverse rocks and unconsolidated surface materials containing “quartz and carbonate minerals”. Layered silicates (LS) and “hydroxyl-bearing minerals” are not as common as they used to be, but their availability varies greatly in the area where they are found. The distribution of LS minerals within the catchment are majorly found at lower altitudes, which implies the weathering mechanism due to the interaction of meltwater and parental rock. Multivariate analysis revealed that CO3 and SiO3 weathering, sulphate dissolution, and pyrite oxidation dominate dissolved ion concentrations. Chemometric analysis of meltwater hydro-geochemistry through principal component analysis explains 72.1% of the total variance of four PCs. PCs 1, 2, 3, and 4 explain 39.21%, 12.91%, 10.24%, and 9.74% of variance, respectively, in 2016. Similarly, in 2017, four PCs explain 69.91% of the total variance. PC 1, 2, 3, and 4 can explain 26.62%, 20.12%, 12.64%, and 10.52% of variance.
EN
Nowadays, machine learning algorithms are considered a powerful tool for analyzing big and complex data due to their ability to deliver accurate and fast results. The main objective of the present study is to prove the effectiveness of the extreme gradient boosting (XGBoost) method as well as employed data types in the Saharan region mapping. To reveal the potential of the XGBoost, we conducted two experiments. The first was to use different combinations of: airborne gamma-ray spectrometry data, airborne magnetic data, Landsat 8 data and digital elevation model. The objective is to train 9 XGBoost models in order to determine each data type sensitivity in capturing the lithological rock classes. The second experiment was to compare the XGBoost to deep neural networks (DNN) to display its potential against other machine learning algorithms. Compared to the existing geological map, the application of XGBoost reveals a great potential for geological mapping as it was able to achieve a correlation score of (78%) where igneous and metamorphic rocks are easily identified compared to sedimentary rocks. In addition, using different data combinations reveals airborne magnetic data utility to discriminate some lithological units. It also reveals the potential of the apparent density, derived from airborne magnetic data, to improve the algorithm’s accuracy up to 20%. Furthermore, the second experiment in this study indicates that the XGBoost is a better choice for the geological mapping task compared to the DNN. The obtained predicted map shows that the XGBoost method provides an efficient tool to update existing geological maps and to edit new geological maps in the region with well outcropped rocks.
4
Content available Wyzwania kartografii geologicznej w Polsce
EN
Geological mapping is a highly interpretive and scientific process that produces a range of map products for many different uses, basically for sustainable land and mineral resources management. This is a primary and principal task of all geological surveys in the world. The establishment of the Polish Geological Institute in 1919 founded a basic framework for geological mapping in Poland. After the Second World War, an extensive production of geological (serial, regional and thematic) maps at different scales in atlases and scientific publications was initiated. Within the past 30 years, geographic information system (GIS) technology has begun to change geologic mapping by providing software tools, a use of which permits geological data to be electronically stored, displayed, queried and analysed in conjunction with a seemingly infinite variety of other data types. The fully automatic process of map generalization and its founding on hierarchic geological vocabularies will enable flexible presentation of geological data while passing from one scale to another. New technological advances and international standards in description, collection, exchange and visualisation ofgeological data, as well as its connection with external resources, will result in substantial enrichment of information in databases and will create new possibilities in search and use of data in the Web.
EN
Geologists of the Polish Geological Institute carried out their professional activities abroad as part of geological expeditions, in teams of several people and on individual contracts, including as experts of the United Nations. In terms of the scope of work, most of their activities were focued on research on mineral resources, mapping, geochemistry, hydrogeology and geophysics, as well as on teaching of geology at the university level. The beginnings date back to the turn of the 1950s. It began with a geological expedition to Vietnam. Mongolia was the goal of subsequent expeditions on a much wider scale. The researches were conducted from the beginning of the 1960s until the end of the 1980s. The contracts, performed in groups of several people and individually, covered about 20 countries; most of them on the African continent. They focused primarily on the search for metal ore deposits, hard coal, and chemical and rock raw materials. PGI geologists also worked as UN experts in Benin, Burundi, Chad, Gabon, Haiti, India, Madagascar, Mauritania and Niger. The results of their work on various continents were the discoveries of numerous mineral deposits and the recognition of geological structure over an area of thousands of square kilometres.
EN
This paper presents processing and analysis results of ASTER and Landsat 8 scenes to aid in geological mapping of Murchison Greenstone Belt region of Limpopo Province, South Africa. Images of ASTER acquired in 2005 and 2006 and Landsat 8 acquired in 2019 were downloaded and subset covering 5 mapping sheets was extracted. Images of different band ratios and band combinations were experimented using ENVI and SNAP software to identify suitable band/band ratio combinations to produce FCCs that enabled discrimination of lithology, structural features, lineaments, alteration and iron oxides, land/ water, surface features, vegetation cover and healthy vegetation etc. Using DEM data, slope and shaded relief were also prepared that enabled the identification of the extent of protruded outcrops, some structural features and lineaments using different FCC displays. These datasets prepared in ENVI file format were later exported to GeoTiff/Imagine file for display in ArcMap by the mapping geologists. FCCs made in various band combinations, ratio combination and also with slope are useful in discriminating geology, structural features and protruded outcrops including dykes that are not so visible in a true colour image of the same resolution. This study could illustrate the usefulness of remote sensing analysis to aid in geological mapping using freely available ASTER and Landsat 8 data.
PL
W artykule przedstawiono wyniki przetwarzania i analizy obrazów zarejestrowanych przez satelity ASTER oraz Landsat 8. Czynności te wykonane zostały w celu sporządzenia mapy geologicznej dla regionu Murchison Greenstone Belt w prowincji Limpopo, w Afryce Południowej. Zdjęcia wykonane przez ASTER pochodzą z lat 2005 i 2006, natomiast te zarejestrowane przez Landsat 8 z 2019 roku. Analizowane zdjęcia zostały tak dobrane, aby obejmowały obszar odpowiadający pięciu arkuszom mapy geologicznej. Eksperymentowano z wykorzystaniem oprogramowania ENVI i SNAP w celu stworzenia obrazów, które byłyby pomocne w zidentyfikowaniu makroskopowych cech skał, ich struktury, linii nieciągłości, przeobrażeń minerałów i tlenku żelaza, linii pomiędzy lądem i wodą, cech powierzchni, pokrycia roślinnością, wegetacji roślin etc. Korzystając z danych DEM, przygotowano obrazy przedstawiające rzeźbę terenu, które pozwoliły na określenie wysokości terenu, niektórych cech strukturalnych i linii szkieletowych. Wszystkie obrazy zostały później wyeksportowane do plików w formatach GeoTiff i Imagine w celu wyświetlenia ich w ArcMap. Obrazy te okazały się przydatne w rozróżnianiu cech geologicznych i konstrukcyjnych oraz wysokości obiektów, w tym wałów, które nie są dobrze widoczne na obrazach w naturalnych kolorach. Badanie to potwierdza przydatność analizy teledetekcyjnej w tworzeniu map geologicznych z wykorzystaniem swobodnie dostępnych danych z satelitów ASTER i Landsat 8.
PL
W ciągu ostatnich kilkunastu lat z obszaru Sudetów zinwentaryzowano i opisano dużą liczbę form osuwiskowych. W większości opracowań główny nacisk skierowano jednak na geomorfologiczną charakterystykę tych form. W artykule przedstawiono zależności rozwoju wybranych sudeckich osuwisk od budowy geologicznej, a także ocenę stopnia transformacji poszczególnych elementów struktury podłoża przez ruchy masowe. Jak wynika z prac kartograficznych i analiz geomorfometrycznych opartych na numerycznych modelach terenu LiDAR (ang. Light Detection and Ranging), wygenerowanych na podstawie danych pochodzących z lotniczego skaningu laserowego, brak rozpoznania pojedynczych, aczkolwiek rozległych jak na warunki sudeckie form osuwiskowych, a w konsekwencji prowadzone w obrębie nierozpoznanych osuwisk pomiary powierzchni uławicenia, spękań ciosowych i uskoków, były przyczyną błędów w rozpoznaniu budowy geologicznej w przeszłości. W pracy przedstawiono przykłady czterech form osuwiskowych znajdujących się na terenie trzech jednostek geologicznych – rowu Wlenia (synklinorium północnosudeckie), elewacji Łącznej (synklinorium śródsudeckie) i rowu Glinna (blok sowiogórski).
EN
Despite the relatively large number of individual landslides recognized and described over the last several years from the Sudety (Sudetes) Mountains (Lower Silesia, SW Poland), most of the papers focused on the geomorphological characterisation of these forms. This paper presents the results of geological and geomorphological mapping of individual landslides, recognized within three geological units: the Wleń Graben (Northsudetic Synclinorium), the Łączna Elevation (Intrasudetic Synclinorium) and the Glinno Graben (Sowie Mountains Block). Particular attention has been paid to the role of the geological structure in the initiation and development of mass movements as well as the degree of transformation of the planar, structural elements (bedding planes, joints, faults) of the landslide bedrock. The results of geological mapping and geomorphometric analysis with a basis in Light Detection and Ranging (LiDAR) show that the structural measurements carried out in the past within previously unrecognized landslides were probably the main reason for incorrect interpretations of the geology of the areas investigated.
EN
Recognition and precise delimitation of landslide-affected areas, especially in the mountains, have been a challenge so far. New opportunities emerged after dissemination of high- resolution Digital Elevation Models generated by Airborne Laser Scanning (ALS), which are also used to processing and visualization of geological data. This paper touches the issue in both aspects mentioned above, and presents results of morphometric analysis of a landslide on the northern slope of the Drogosz hill within the Zawory Range, in the southern part of the Krzeszów Basin (Central Sudetes). Attempts ofreconstruction ofthe slip surface and estimation oftotal volume of the landslide colluvialfill were undertaken. Furthermore, differential maps were compiled. They were a basis for the spatial distribution of thickness evaluation. The Drogosz hill landslide seems to be strictly related to the geological structure of the research area. The Zawory Range is composed of Upper Cretaceous, Lower Triassic (Buntsandstein) and Permian (Rotliegendes) rocks. Lack of recognition of landslide phenomena was probably the main reason of misleading interpretations of the Krzeszów area geology. The paper also provides comments on the existing concepts of the geological structure of the Krzeszów Basin, especially of the Łączna Anticline.
EN
The Polish Geological Institute - National Research Institute (PGI-NRI) acts as the Polish Geological Survey (PGS) and is the main provider of geological maps in Poland. Since 1953 the Polish Geological Institute ’s activities have been focused on the construction of multi-sheet map editions covering the whole territory of the country. The most important map - first edition of the Detailed Geological Map of Poland in scale of1 : 50,000 (DGMP 1 : 50,000) - will be fully compiled in GIS technology in 2020. It is a basic map used for preparation of all other thematic maps and databases in the country, both in detailed and regional scale. Due to increased interest in geoturism in Poland, the PGS has started to elaborate geological-tourist maps, what is one of the basic forms of geoturism popularization.
PL
Kryteria bezpiecznej lokalizacji elektrowni jądrowej (EJ) są zależne od charakterystyki reaktora i systemów peryferyjnych oraz od unikalnych geologicznych warunków terenowych. Podstawą wyboru optymalnej lokalizacji jest uwzględnienie warunków koniecznych do uzyskania na podstawie studiów terenowych i badania dostępnych materiałów prawnie obowiązującej decyzji lokalizacyjnej. Do określenia stopnia bezpieczeństwa i identyfikacji czynników zagrażających budowie i funkcjonowaniu reaktora jest niezbędna opinia geologiczno-inżynierska wraz ze scenariuszem awarii i likwidowania jej skutków w konkretnej sytuacji geologiczno-terenowej, z uwzględnieniem zastrzeżeń i oporów opinii społeczno-politycznej. W ocenie zagrożeń należy odrębnie uwzględniać możliwość wystąpienia niekorzystnych zbiegów okoliczności naturalnych oraz podatności obiektu na zagrożenia antropogeniczne wynikające z zaniedbań oraz intencjonalne. Podstawą wstępnego wyboru lokalizacji jest mapa obszarów niekonfliktowych z uwzględnieniem przyjętego marginesu szkodliwych oddziaływań wzajemnych obiektu EJ i istniejącej sytuacji terenowej. Przed rozpoczęciem analizy terenów możliwej lokalizacji, z powodu dużych wymiarów kraju, należy wyeliminować miejsca oczywiście nie nadające się do rozważań z powodów naturalnych i antropogenicznych. Wielkie aglomeracje przemysłowe, obszary objęte górnictwem podziemnym, tereny zwartej zabudowy oraz rezerwaty przyrody, tereny bagnisk i zagrożeń powodziowych, jak również tereny podatne na osuwiska i rozległą erozję należy wyeliminować z dalszych rozważań lokalizacyjnych. Jednak można dopuścić możliwości lokalizacji EJ w miejscach niekorzystnych, jeśli inne przesłanki są sprzyjające. Nowoczesne technologie są wystarczające do omijania przeszkód jeśli ekonomiczne względy przeważają.
EN
A safe location site for Nuclear Power Plant (NPP) depends on, both, technical characteristics of a reactor with its peripheral systems, and on unique geological terrain conditions. Field and archive studies of possibly all materials, relevant for issuing legal decision are the basis for choosing an optimal NPP site. Evaluation of the safety level and detection of factors hazardous for the safe operation of a NPP must be supported by a comprehensive geological engineering report, supplemented with the modeled scenario of a plant’s possible catastrophe, its minimizing and prevention of disastrous effects. Another inalienable factor for choosing site place for NPP are “pros” and “cons” concessions resulting from social consultations. In determining the risks, one must consider all the possible unfortunate coincidences on natural factors, and the vulnerability of the NPP to human errors caused by negligence or, ill will. A base map presenting areas free of interaction conflicts with topographic and infrastructural objects outside a margin safety zone remains the base for initial terrain selection.
EN
My presentation is focused on the analysis and mapping of landslides and rock falls from the western part of the Pavlov Hills in southern Moravia. The Pavlov Hills are situated in the NW margin of the outer units of the Carpathian Flysh belt and are formed by Jurassic to Cretaceous flysh sediments incorporated into nape sheets of Carpathian Flysh Belt (Ždánice and Pouzdřany Units) (Poul 2006). Landslides are important elements in evolution of landforms and represent a serious geohazard in many areas of the world. Different kinds and types of landslides cause problems and difficulties to human society every year and that is why they are one of human treating natural disasters. There are only a few areas with recorded risks of landslides in the Czech Republic. One of these areas is the area of the Pavlov Hills. There is not enough of sufficient attention payed to geological mapping of the area of Pavlov Hills, because there are not many human settlements or infrastructure nearby. My field work involved observation and measurement of faults, rockfalls and slides. My presentation is focused on updating existing maps of slope instabilities in the mentioned area. For that reason, previously mapped areas were documented, registered and included into a map sheet. Eleven sliding localities in the Pavlov Hills were described and documented. Into the final map I included the additions according to type: flow slides – 5, planar slides – 4, and 2 rock falls. The resulting map with accompanying sheets can be used as a basis for further mapping or other activities associated with the observation of landslides such as landslide prevention and remediation, clarification of the hydrogeological conditions of the area and verification of geological slip surfaces, which are not affected by landslides.
EN
The east-central part of the Kamienne Mountains in the Sudetes has long been known as an area where landslides occur in abundance. Their extent was shown on first detailed geological maps from the early 20th century and later on Polish geological maps published in the 1970 and 1990. The total landslide area mapped was about 100 ha. The availability of LiDAR data allowed to build digital elevation models of very high resolution and to attempt landslide mapping using diagnostic landform assemblages as guidelines. 30 separate landslides have been mapped, including complex landslide areas involving overlapping landslide bodies oflikely different origin. The total landslide area is at least300 ha, while the largest complexes cover 40-50 ha. LiDAR-based models proved extremely useful in landslide mapping, espe- cially in forested areas.
EN
The Sub-Tatric units was newly mapped for the implementation of the Detailed Geological Map of the Tatra Mountains at the scale of 1 : 10 000 (SmgT). Lithostratigraphic andtectonic field observations between the Bystra Valley and the Strążyska Valley allowed a newinterpretation of the geological structure of the area. The system of sheets has appeared to beeven more complicated than that advocated by Guzik and Kotański (1963). New sheets have been recognized: Grześkówki sheets (Lower and Upper sheets), which were distinguished from the former Grześkówki sheet (sensu Guzik & Kotański, 1963), and the Kazalnica sheet and Żywczańskie sheet, which were distinguished from the Samkowa Czuba sheet. Both Grześkówki sheets and Kazalnica sheet are composed of Carnian and Norian clastics or marly dolomites, Rhaetian limestones and Hettangian clayey-silty shales. The Lower Grzeoekówki and Kazalnica sheets lie in the inverted position and Żywczańskie sheet is composed of an isolated package of Lower Jurassic spotted marls and limestones lying in the normal position contrary to the inverted beds of the Samkowa Czuba sheet. The Spadowiec sheet has a wider spatial extent than it was postulated earlier. The Jastrzębia Turnia sheet probably does not exist in area between the valleys of Białego and Bystra.
14
Content available „Riese” – geoturystyczna perła Gór Sowich
PL
W artykule przedstawiono krótką historię powstania i rozwoju podziemnych obiektów militarnych na terenie Gór Sowich. Zwrócono szczególną uwagę na fakt, że obiekty wchodzące w skład kompleksu „Riese” („Olbrzym”) stanowią źródło informacji o minionych zdarzeniach nie tylko w kontekście historii najnowszej, ale również umożliwiają badaczom spojrzenie w minione epoki geologiczne. Obiekty te są atrakcją turystyczną, ale również umożliwiają badaczom prowadzenie podziemnych kartowań geologicznych w celu dokładnego zapoznania się z budową górotworu. Dzięki temu, oprócz podziemnych tras dydaktycznych, możliwe staje się stworzenie szeregu tras geoturystycznych ukazujących piękno przyrody i umożliwiających obserwację struktur geologicznych niewidocznych na powierzchni ziemi.
EN
This article shows the short story of the birth and development of underground military facilities in the Sowie Mountains area. Particular attention has been paid to the historical matter of “Riese” (“Giant”) facilities. In addition to the underground teaching paths they are an important source of information for the modern history and the past geological ages. This tourist attraction allows researchers to draw underground geological maps and aids the precise recognition of rock formations that surround the “Riese” facilities. This makes it possible to establish many geotouristical routes revealing the beauty of the surrounding nature and observe the geological structures impossible to see from the surface.
15
Content available OneGeology - geologia jedna!
EN
The international initiative of Geological Surveys OneGeology is 5 years old this year. Currently, 117 countries participate in OneGeology. Thanks to international cooperation, a geological map of the world is being created. This is the first one constructed as a distributed data system, where the owners and distributors are individual countries. According to the assumptions presented in OneGeology a superficial and bedrock geology maps are produced in a digital format. The process of implementation and testing of the GeoSciML geological data exchange language has already begun and it ensures the geological data interoperability. This is the first step in the efforts to harmonize data. The result will be a consistent map, where the geological units will be defined clearly and artificialfaults along the administrative borders, being a result of differences in geological interpretation of the same rocks, will disappear. The Polish Geological Institute - National Research Institute provides a geological map of Poland at a scale of1 :1 000 000 as WMS and WFS web services. Currently, other maps are in preparation, which allow knowing the general surface and subsurface geological structure ofPoland. The PGI-NRI, as a participant of OneGeology initiative, conducts also numerous presentations to popularize the project among representatives of the geological surveys including Angola, Ukraine and Albania. The result ofPolish-Ukrainian cooperation is Geological Map of Ukraine published as WMS.
PL
W artykule zaprezentowano wyniki geologicznego kartowania wybranych historycznych, podziemnych obiektów pogórniczych na obszarze Sudetów. Geologiczne kartowanie takich obiektów przedstawiono jako metodę służącą pozyskiwaniu bardzo precyzyjnych danych geologicznych. Uzyskiwane podczas takich prac wyniki są elementem opisu georóżnorodności i dziedzictwa górniczego, a także służą ochronie tych wartości. Zagadnienie ukazano na przykładzie czterech wybranych obiektów: Sztolni Górnej w Kowarach (pole górnicze kopalni „Wolność"), sztolni Gertruda w Złotym Stoku, małej sztolni po eksploatacji marmuru w Janowicach Wielkich obraz obiektu Osówka (fragmentu poniemieckiego kompleksu wojskowego „Riese").
EN
Geological plans of selected old underground mining workings in the Sudety Mts. (SW Poland) were shown in a paper below. Geological mapping of such objects is presented as a method of very precise geological data collection. The results obtained are part of description and protection of geoheritage and geodiversity. Four examples of geological plans were shown, made for: Upper Adit in Kowary (on the old mine "Freedom" mining field), Gertruda adit in Złoty Stok, a small adit in Janowice Wielkie and Osówka object (element of Nazi military complex "Riese").
17
Content available remote Budowa geologiczna zlewni potoku Chyrowskiego w rejonie Dukli
PL
Artykuł dotyczy budowy geologicznej płaszczowiny śląskiej oraz dukielskiej w rejonie zlewni potoku Chyrowskiego, położonego na południe od Dukli. Przedstawiona w artykule budowa geologiczna tego obszaru z jednej strony opiera się na wcześniejszych mapach geologicznych tego rejonu, szczególnie zaś na mapie: Mapa geologiczna Polski w skali 1:50 000, arkusz Dukla. Z drugiej strony podstawą zaproponowanej budowy geologicznej są badania własne autora, prowadzone w terenie w 2003 r. wraz ze współpracownikami z zakładu PMG. Wykonane prace umożliwiły szczegółowe rozpoziomowanie utworów jednostki śląskiej i dukielskiej na poszczególne wydzielenia litostratygraficzne charakterystyczne dla tych jednostek oraz na przestrzenne ustalenie granic tych wydzieleń. Przedstawiono to na szczegółowej mapie geologicznej w skali 1:10 000. Należy podkreślić, że o ile budowa geologiczna jednostki śląskiej jest zbliżona do przedstawianej na dotychczasowych mapach, to budowa jednostki dukielskiej jest zdecydowanie inna niż było to dotychczas prezentowane. Interpretację budowy geologicznej przedstawiono na przekrojach geologicznych wykonanych na kierunku N.S. Pozwoliło to pokazać skomplikowany układ tektoniczny występujący na pograniczu strefy nasunięcia jednostki dukielskiej na śląską.
EN
The following text applies to the geological structure of the Silesian and Dukla nappe in the Chyrowski stream region, located south of Dukla. The geological structure presented in this article is based on previous geological maps and particularlyon the Polish Geological Map, scale 1:50 000. The geological structure of the analyzed region has been updated based on field research conducted by the author of the article in 2003. The results of the works made possible to build detailed lithostratigraphic models of the Silesian and Dukla geological units. The new details were presented on a geological map on a scale of 1:10 000. It should be noted that while the Silesian geological structure is quite similar to that depicted on existing maps, the construction of the Dukla unit is much different than it was previously presented. Interpretation of the new geological model was presented on geological crosssections with NS direction. The presented geological cross-section allowed to show a complicated tectonic system which occurs at the border of the Dukla and Silesia units.
EN
This paper presents aeromagnetic images for the Chhattisgarh basin region, in Central India, to provide a new window on Precambrian basement geology and structure. On the basis of aeromagnetic patterns, the Chhattisgarh basin is sub-divided into a northern low (negative) anomaly zone and a southern high (positive) anomaly zone. The northern portion of the main Chhattisgarh basin has been further divided into two subbasins, the Hirri sub-basin in the west, and Baradwar sub-basin in the east. A prominent negative anomaly delineates a NW-SE trending greenstone belt separating these sub-basins. Positive magnetic anomalies delineate the extent of the Dongargarh granite and equivalents, while the weak magnetic anomaly in the southeast of the Dongargarh granite and equivalents reflect granulite gneisses of the Eastern Ghat Mobile Belt. By applying the reduced-to-the-equator filter we enhanced the possible magnetic sources and structural lineaments within the Chhattisgarh basin. A new sketch map of structural elements was then compiled from aeromagnetic interpretation over the Chhattisgarh basin area. It includes possible faults, folds and an inferred lithological boundary.
19
Content available remote DEM, stereogramy i anaglify
PL
Po wprowadzeniu do geologii numerycznego modelu terenu (DEM) poprawia się jakość map i zostaje przywrócone duże znaczenie analizy rzeźby terenu w powierzchniowych badaniach geologicznych. Cieniowanie podkreślające elementy rzeźby terenu i całe ich zespoły, jak i izolinie hipsometryczne i barwy spowodowały powodują zwiększenie czytelności, lub w ogóle ujawniają związki morfologii terenu z geologią. W geomorfologii są przydatne rzuty perspektywiczne terenu, a starannie dobrane parametry prezentacji DEM są elementem inspiracji badawczej przez ujawnianie, niespodziewanych w danym obszarze, lub nieznanych dotąd przestrzennych asocjacji form terenu. Wszystkie obrazy DEM w niniejszym tekście zostały wygenerowane na podstawie uprzejmie udostępnionego przez Zarząd Geografii Wojskowej DEM opracowanego na podstawie DTED poziomu 2.
EN
DEM (Digital Elevation Model) applied in geology upgrades quality of geological maps and revaluates geomorphology as important research tool in geological mapping. Shadowing exposes various terrain form and their complexes, hypsometric contourlines and colors emphasize the relationships between terrain sculpture and morphology. In geomorphology a perspective projections play important role, and carefully chosen DEM presentation parameters are inspiring the scientific exploration of terrain history and modifications. All DEM illustrations in the text were generated from the kindly offered DEM by the Board of Military Geography derived from DTED level 2.
EN
Geological sciences have recently utilized a wide range of numerical methods to collect, analyze, visualize and interpret geospatial datasets both at industrial and academic level. Investigation of various elements of surface and subsurface structures using DEM (Digital Elevation Model), DTM (Digital Terrain Model) and SRTM (Shuttle Radar Topography Mission) data provides unique opportunities for depiction of geology and geomorphology in a form of three-dimensional maps. These digital maps should potentially replace traditional topographic maps in the nearest future. New numerical systems have enhanced significantly time efficiency of producing maps and related databases. Advance in detailed work on the high resolution maps and digital elevation computer-supported models is essential for precise and objective interpretation of large datasets. Available visualization systems produce sets of images and animations showing geospatial structures, processes and their relations in a multi-dimensional form commonly presented as stereo-pairs for presentation in an immersive environment or as anaglyphs. Utilization of web-accessible datasets of DTED level 0 and 1 and LandSat images is a new advantage in small and regional scale mapping.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.